
PROJECT 3:
PER-CPUVARIABLES

Minimum Requirements: 3 public tests

You ONLY need to modify ~13 files for this project, don’t be scared.

TEST DISTRIBUTION

Public tests – 3 tests | 32 points

Release tests – 0 tests | 0 points

Secret tests – 4 tests | 20 points

2

PER-CPU VARIABLES

• Data that is local to a processor can be useful.

• In this project, two variables are needed to be saved for each processor (CPU).

• The current thread.

• The index of the current CPU.

3

HOW TO GET PER-CPU VARIABLES

• Before (expensive!):

• Disable preemption →Visit a shared region of memory in the APIC region → Re-enable
preemption.

• After this project (more efficient):

• Each processor will have its own memory area and can only be accessed by the processor alone. No
need to disable interrupts.

4

SEGMENTATION

• A memory segment specifies a region of memory and the "privilege level" that is required to
access that memory.

• Each user program has its own memory segments - one for code, one for data, one for its stack,
plus a couple extra for various purposes.

• If the operating system sets up the segments properly, a program will be limited to accessing
only its own memory.

• Memory segments allow programs to use relative memory references. All memory references
are interpreted by the processor to be relative to the base of the current memory segment.

5

X86 REAL MODE & PROTECTED MODE
• Real mode:

• GeekOS enters this mode upon power up

• Address translation in real mode:

6

Segment Register

Physical Address

• Protected mode

• Enters protected mode setup.asm. GeekOS runs in this mode.

• In protected mode, the processor is a 32-bit machine with many more features

• Address translation: A segment register saves a 16-bit segment selector, which select a 64-bit segment descriptor
from a segment descriptor table. The segment descriptor and the 32-bit offset together define a memory address.

A hardware memory management unit (MMU) is responsible for translating the segment and offset into
a physical address

SEGMENT REGISTERS

8

CS Code Segment

DS Data Segment

SS Stack Segment

ES Extra Segment

FS General purpose
segmentsGS

• The purpose of segment registers is to hold segment
selectors.

• We use GS for this project.

SEGMENT SELECTORS

9

Format of a segment selector:

Index: index in GDT or LDT

TI: Table indicator (GDT/LDT)

RPL: Requested Privilege level (protection level of segment)

A segment selector uses its index as the entry index of the
segment descriptor in a GDT/LDT.

Kernel’s segment selectors (defs.asm)

User’s segment selectors (user.h)

SEGMENT DESCRIPTORS

• Fully describe characteristics of memory segments.

• Include the base address, the limit (size of the memory segment),
the privilege level and several other bits.

• Segment descriptors are stored in segment descriptor tables.

10

The x86 and x86-64 segment descriptor structure:

DESCRIPTOR TABLE

• Two types of descriptor tables:

• Global descriptor table (GDT)

• Contains information for all of the processes and kernel.

• There will be a GDT per processor.

• Each user process has an entry in the GDT that refers to its LDT (in userContext)

• Local descriptor table (LDT)

• Stores the segment descriptors for each user process.

• There is only one LDT per process.

• But how does the process find the GDT or its LDT?

• By using the GDTR and LDTR registers.

11

GDTR & LDTR REGISTERS

• GDTR stores the addresses of the GDT

• LDTR stores the selector that selects the LDT descriptor of the current process in GDT

• The memory segments for a process are activated by loading:

• The LDT segment selector into the LDTR

• The segment selectors into the various segment registers (CS, DS, GS, etc).

12

13

14

15

DATA STRUCTURE DEF: PERCPU.C AND PERCPU.H

• percpu.h

• Define a struct to hold percpu data (e.g. cpu index and a pointer to current thread). Make an array to hold
the percpu data struct instances for all CPUs.

• Percpu.c

• Void Init_PerCPU(int cpu):

• Init the related percpu data structure instance. The field related to current_thread can be initialized to null.

• Int PerCPU_Get_CPU(void)

• Get the CPU ID using inline assembly.

• Struct Kernel_Thread *PerCPU_Get_Current(void)

• Get the current thread using inline assembly.

• Use inline assembly: move the data stored at gs_segment + some_offset to the local var and return.
(Later we will define the offset of gs segments as the addresses of the elements in the per-cpu data
array.)

16

INLINE ASSEMBLY EXAMPLE:

AT&T syntax: mov src, dst

asm("movl %%gs:0, %0"

: "=r" (kthread) //output, %0

:

);

Description: Copy the value from gs segment offset by 0 into variable kthread, use any register.

17

ASSEMBLY GETTER SETTER: PERCPU.ASM

• Currently empty, but you need to redefine current_thread macros to use the per-cpu segment.

• Overwrite the macros defined in lowlevel.asm, you might want to take a look at their original
definition

• Get_Current_Thread_To_EAX

• Set_Current_Thread_From_EBX

• Push_Current_Thread_PTR

• Each of them should only be one line assembly within the macro in x86 assembly syntax.

18

INITIALIZATION: MAIN.C, SMP.C AND KTHREAD.C

• Call Init_PerCPU(). (Main.c)

• Init the first cpu data (cpu 0)

• In Secondary_Start (Smp.c)

• Call Init_PerCPU()

• You know which cpu you are supposed to init since the CPU id is given to you.

• In Init_Scheduler (Kthread.c)

• Put mainThread into the percpu data struct instance of the current CPU.

19

GETTER INVOCATION: SMP.C

• Modify get_current_thread(Smp.c)

• Use the function you defined in percpu.c to get the current thread.

20

SET UP GDT: GDT.C

• s_GDT: kernel’s global descriptor table (max number of CPUs allowed here is 8, but the actual
number used is CPU_Count in smp.c)

• Allocate a segment descriptor for the cpu of index (int)cpu rather than just for the first cpu.

21

SET UP GDT: GDT.C

• In Init_GDT function

• Go through this function and the functions used in it to see how the GDT entries (descriptors) for
cs and ds are allocated and initialized.

• It originally only initializes the GDT for the first CPU (only when if(cpuid == 0)), since in this
project we are using multiple CPUs, the way of assigning the descriptors should be changed
accordingly.

• Allocate a descriptor for gs (percpu data segment), and initialize that descriptor. For the
initialization part, you might want to define another function in segment.c to do that.

22

SET UP GDT: SEGMENT.C

• Define a function (which you might use in gdt.c) to initialize the descriptor for the percpu data
segment.

• Refer to Init_Data_Segment_Descriptor() on how everything is initialized, but you may want to use
Set_Size_And_Base_Bytes().

23

DEFINE SEGMENT SELECTOR

• defs.asm

• You’ll need to define a GDT selector for the per-cpu data segment. Refer to how KERNEL_CS is
defined.

• defs.h

• You’ll need to define a Per-CPU variables selector. Refer to how KERNEL_CS is defined.

24

LOWLEVEL.ASM

• Load gs in Handle_Interrupt and Load_GDTR

• Follow how KERNEL_DS is loaded into the ds register.

25

SET UP SEGMENT SELECTOR: KTHREAD.C

• In Setup Kernel Thread, push an initial gs appropriately.

26

SET UP LDT: USER.H AND USERSEG.C

• user.h

• Make the Segment_Descriptor *ldtDescriptor an array, each element in the array points to the
GDT entry that contains a descriptor corresponding to the LDT of the user process.

• Userseg.c

• You might need to use extern CPU_Count to import the CPU_Count var from smp.c

• Create_User_Context: originally only puts the ldtDescriptor into the GDT of one cpu (one row in
s_GDT), but now you need to allocate a segment descriptor in each cpu’s GDT(different rows in
s_GDT) and initialize that entry as a descriptor for the LDT of the current process. (You can either
use a loop or write a helper function.)

• Destroy_User_Context: free the segment descriptors for the LDT in all the GDTs.

27

28

HINTS
• Extremely hard to debug, make sure you understand GDT/LDT and the slides before writing the code.

• Look for TODO_P(PROJECT_PERCPU, …) to know where to add code.

• The following files should be modified, check all of them if you run into any issue:

• percpu.c
• percpu.h (optional)
• percpu.asm
• main.c
• smp.c
• kthread.c (2 locations)
• gdt.c
• segment.c
• defs.asm
• defs.h
• lowlevel.asm (2 locations)
• user.h
• userseg.c

29

HINTS

30

	Project 3:�Per-Cpu Variables
	Test distribution	
	Per-CPU Variables
	How to get per-CPU variables
	Segmentation
	X86 Real mode & protected mode
	Slide Number 7
	Segment Registers
	Segment Selectors
	Segment Descriptors
	Descriptor Table
	GDTR & LDTR Registers
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Data structure def: percpu.c and percpu.h
	Inline assembly example:
	Assembly getter setter: percpu.asm
	Initialization: Main.c, Smp.c and Kthread.c
	Getter invocation: Smp.c
	Set up GDT: gdt.c
	Set up GDT: gdt.c
	Set up GDT: Segment.c
	Define segment selector
	Lowlevel.asm
	Set up segment selector: Kthread.c
	Set up LDT: user.h and userseg.c
	Slide Number 28
	HInts
	HInts

