PROJECT 3:
PER-CPU VARIABLES

Minimum Requirements: 3 public tests

You ONLY need to modify ~13 files for this project, don’t be scared.

TEST DISTRIBUTION

Public tests — 3 tests | 32 points
Release tests — 0 tests | 0 points

Secret tests — 4 tests | 20 points

PER-CPU VARIABLES

+ Data that is local to a processor can be useful.

* In this project, two variables are needed to be saved for each processor (CPU).
* The current thread.

* The index of the current CPU.

HOW TO GET PER-CPU VARIABLES

- Before (expensive!):

* Disable preemption — Visit a shared region of memory in the APIC region — Re-enable
preemption.

 After this project (more efficient):

« Each processor will have its own memory area and can only be accessed by the processor alone. No
need to disable interrupts.

SEGMENTATION

* A memory segment specifies a region of memory and the "privilege level" that is required to
access that memory.

 Each user program has its own memory segments - one for code, one for data, one for its stack,
plus a couple extra for various purposes.

* If the operating system sets up the segments properly, a program will be limited to accessing
only its own memory.

* Memory segments allow programs to use relative memory references. All memory references
are interpreted by the processor to be relative to the base of the current memory segment.

X86 REAL MODE & PROTECTED MODE

0000 0110 1110 1111 0000 Segment, 16 bits, shifted 4 bits left (or multiplied by 0x10)

Segment Register

* Real mode:
_ + 0001 0010 0011 0100 Offset, 16 bits
* GeekOS enters this mode upon power up

* Address translation in real mode: 0000 1000 0001 0010 0100 Address, 20 bits Physical Address

* Protected mode
* Enters protected mode setup.asm. GeekOS runs in this mode.
* In protected mode, the processor is a 32-bit machine with many more features

* Address translation: A segment register saves a | 6-bit segment selector, which select a 64-bit segment descriptor
from a segment descriptor table.The segment descriptor and the 32-bit offset together define a memory address.

Protected Mode Memory Addressing

DS EBX Memory System
0008 | [ooooooss FFFEETEE
Selector Offset A Ay
Descriptor Table
é é ﬂ‘\ Daia
(+)», 0000FFsg || Setmment
" 0000FFO00
Y
.. 0000FFOO0 ™ o
-«-—---m=mTT 100000000

A hardware memory management unit (MMU) is responsible for translating the segment and offset into

a physical address

SEGMENT REGISTERS

CS Code Segment
DS Data Segment
SS Stack Segment
ES Extra Segment
FS

GS

General purpose
segments

The purpose of segment registers is to hold segment
selectors.

We use GS for this project.

User’s segment selectors (user.h)

SEG M ENT SELECTO RS ushort_t | ldtSelectorV,Wm .

Format of a segment selector:

15 3 i_ 2) 1 0) us..-hort_t csSelector;
index TI RPL ' ushort_t dsSelector;
Index:index in GDT or LDT Kernel’s segment selectors (defs.asm)
Tl:Table indicator (GDT/LDT)
RPL: Requested Privilege level (protection level of segment) KERNEL_CS equ 1<<3

KERNEL_DS equ 2<<3

A segment selector uses its index as the entry index of the
segment descriptor in a GDT/LDT.

SEGMENT DESCRIPTORS " ehart.s siretow PACKED

uint_t baselow:24 PACKED;
uint_t type:4 PACKED;
uint_t system:1 PACKED;
dpl:2 PACKED;

Fully describe characteristics of memory segments. utnt_t
uint_t present:1 PACKED;

. . uint_t sizeHigh:4 PACKED;
Include the base address, the limit (size of the memory segment), it t oveilia PACKED:

the privilege level and several other bits. uint_t reserved:1 PACKED;
uint_t dbBit:1 PACKED;

Segment descriptors are stored in segment descriptor tables. uiEtFttg;Z:ﬁ;w:l RS
uchar_ igh;

The x86 and x86-64 segment descriptor structure:

31 - 24 23 22 21| 20 19 — 16 15 14 13 12 11 10 9 |8 7 — 0
Base Address[31:24] |G | D/B | L | AVL | Segment Limit[19:16] | P | DPL 1 | Type C/E | R/W | A | Base Address[23:16]
Base Address[15:0] Segment Limit[15:0]

DESCRIPTOR TABLE

+ Two types of descriptor tables:

* Global descriptor table (GDT)

Contains information for all of the processes and kernel.

There will be a GDT per processor.

Each user process has an entry in the GDT that refers to its LDT (in userContext)
* Local descriptor table (LDT)

Stores the segment descriptors for each user process.

There is only one LDT per process.

* But how does the process find the GDT or its LDT?
* By using the GDTR and LDTR registers.

GDTR & LDTR REGISTERS

GDTR stores the addresses of the GDT
LDTR stores the selector that selects the LDT descriptor of the current process in GDT

The memory segments for a process are activated by loading:
The LDT segment selector into the LDTR

The segment selectors into the various segment registers (CS, DS, GS, etc).

32 bits base address 16 bits limitations

GDTR

ldtSelector = &%ggg\qul’g’g\;\jc\-ﬂdtSelector;

—asm_ __volatile (E11dt %@%::fat(ldtSelectar) mov ax, KERNEL_DS
)i

GDT

GDTR

s_GDT[0][0]

s_GDTIO][1]

s_GDTI[0][2]

GS s_GDT[0][3]
LDTR —=eoriiri

s GDTIONS]
= [T | B

CS descriptor
DS descriptor
Per-CPU descriptor

LDT descriptor

User Context

struct Segment_Descriptor Idt[0]

struct Segment_Descriptor Idt[1]

s_GDT[0][31]

s_GDT[1][0]

s_GDT[1][4]

s GDT[1][31]

s_GDT[7][0]

s_GDT[7][4]

LDT descriptor

struct Segment_Descriptor *IdtDescriptor

ushort_t IdtSelector
ushort_t csSelector

ushort_t dsSelector

s GDT[7][31]

LDT descriptor

GDTR

GS
LDTR

User Context — ?\

struct Segment_Descriptor Idt[0]
struct Segment_Descriptor Idt{1]

struct Segment_Descriptor “IdtDescriptor

ushort_t idtSelector
ushort_t csSelector

ushort_t dsSelector

GDT

s_GDT[0){0]

s_GDT[0)(1) CS descriptor
s_GDT([0)(2) DS descriptor
s_GDT[0)[3] Per-CPU descriptor

e LDT descriptor
. e
s_GDT[0][31)
s_GDT[1){0])
s_GDT[1]{4] LDT descriptor
s_GDT[1)(31)
s_GDT[7)(0)
s_GDT[7]i4] LDT descriptor

s_GDT[7)(31)

ss 1

Process 2

Mem

Data

w_wmw ey, - wmwwwrige W

GS s_GDT[0)[3) Per-CPU descriptor %%

CPU id

kthread

I Per-cpu variables for cpu0

CPU id

kthread

Per-cpu variables for cpu1

CPUId

kthread

DATA STRUCTURE DEF: PERCPU.C AND PERCPU.H

* percpu.h

* Define a struct to hold percpu data (e.g. cpu index and a pointer to current thread). Make an array to hold
the percpu data struct instances for all CPUs.

* Percpu.c
+ Void Init_PerCPU(int cpu):
Init the related percpu data structure instance.The field related to current_thread can be initialized to null.
* Int PerCPU_Get_CPU(void)
Get the CPU ID using inline assembly.
« Struct Kernel_Thread *PerCPU_Get_Current(void)

Get the current thread using inline assembly.

* Use inline assembly: move the data stored at gs_segment + some_ offset to the local var and return.
(Later we will define the offset of gs segments as the addresses of the elements in the per-cpu data
array.)

INLINE ASSEMBLY EXAMPLE:

AT&T syntax: mov src, dst

asm("movl %%gs:0, %0"
:"=r" (kthread) //output, %0

Description: Copy the value from gs segment offset by 0 into variable kthread, use any register.

ASSEMBLY GETTER SETTER: PERCPU.ASM

» Currently empty, but you need to redefine current_thread macros to use the per-cpu segment.

« Overwrite the macros defined in lowlevel.asm, you might want to take a look at their original
definition

* Get_Current_Thread To EAX
« Set_Current_Thread From EBX
* Push_Current_Thread PTR

 Each of them should only be one line assembly within the macro in x86 assembly syntax.

INITIALIZATION: MAIN.C, SMPC AND KTHREAD.C

Call Init_PerCPU(). (Main.c)

Init the first cpu data (cpu 0)

In Secondary_Start (Smp.c)
Call Init_PerCPU()
You know which cpu you are supposed to init since the CPU id is given to you.

In Init_Scheduler (Kthread.c)

Put mainThread into the percpu data struct instance of the current CPU.

GETTER INVOCATION: SMP.C

* Modify get_current_thread(Smp.c)

Use the function you defined in percpu.c to get the current thread.

20

SET UP GDT: GDT.C

s_GDT: kernel’s global descriptor table (max number of CPUs allowed here is 8, but the actual
number used is CPU_Count in smp.c)

Allocate a segment descriptor for the cpu of index (int)cpu rather than just for the first cpu.

21

SET UP GDT: GDT.C

* In Init_GDT function

* Go through this function and the functions used in it to see how the GDT entries (descriptors) for
cs and ds are allocated and initialized.

It originally only initializes the GDT for the first CPU (only when if(cpuid == 0)), since in this
project we are using multiple CPUs, the way of assigning the descriptors should be changed
accordingly.

* Allocate a descriptor for gs (percpu data segment), and initialize that descriptor. For the
initialization part, you might want to define another function in segment.c to do that.

22

SET UP GDT:SEGMENT.C

 Define a function (which you might use in gdt.c) to initialize the descriptor for the percpu data
segment.

* Refer to Init_Data_Segment_Descriptor() on how everything is initialized, but you may want to use
Set_Size_And_Base_Bytes().

23

DEFINE SEGMENT SELECTOR

defs.asm

You'll need to define a GDT selector for the per-cpu data segment. Refer to how KERNEL_CS is
defined.

defs.h
You’ll need to define a Per-CPU variables selector. Refer to how KERNEL CS is defined.

24

LOWLEVEL.ASM

Load gs in Handle_Interrupt and Load_GDTR
Follow how KERNEL_DS is loaded into the ds register.

25

SET UP SEGMENT SELECTOR: KTHREAD.C

* In Setup Kernel Thread, push an initial gs appropriately.

26

SET UP LDT: USER.H AND USERSEG.C

* user.h

Make the Segment_Descriptor *ldtDescriptor an array, each element in the array points to the
GDT entry that contains a descriptor corresponding to the LDT of the user process.

« Userseg.c

You might need to use extern CPU_Count to import the CPU_Count var from smp.c

Create_User_Context: originally only puts the IdtDescriptor into the GDT of one cpu (one row in
s_GDT), but now you need to allocate a segment descriptor in each cpu’s GDT(different rows in

s_GDT) and initialize that entry as a descriptor for the LDT of the current process. (You can either
use a loop or write a helper function.)

Destroy_User_Context: free the segment descriptors for the LDT in all the GDTs.

27

Setup.asm
l 1. Allocate_Segment_Descriptor_On_CPU
(in gdt.c)
main(in main.c) — Init_Mem(in mem.c) — Init_GDT(in gdt.c) — 2. Initialize an LDT in each processor GDT
¢ (in segment.c, comparable to

Init_LDT_Descriptor)
!
Init_ PERCPU(in percpu.c)
¢ Secondary_Start(in smp.c)

Init_SMP(in smp.c) Init_GDT(in gdt.c)
!

v
Init_ PERCPU(in percpu.c)

'
Init_Scheduler(in kthread.c) — Set the current thread
' Start_Kerr*eI_Thread

4

Setup_Kernel_Thread
(Push an initial gs properly)

28

HINTS

Extremely hard to debug, make sure you understand GDT/LDT and the slides before writing the code.
Look for TODO_P(PROJECT_PERCPU, ...) to know where to add code.
The following files should be modified, check all of them if you run into any issue:

percpu.c
percpu.h (optional)
percpu.asm

main.c

smp.c

kthread.c (2 locations)
gdt.c

segment.c

defs.asm

defs.h

lowlevel.asm (2 locations)
user.h

userseg.c

HINTS

There are two syntaxes for performing a segment override, which are
1. Prefixing whichever command you want to do with the segment you wish to use e.g.

<segment> mov [<offset>],ax
2. Directly invoking it inside the instruction with the <segment>:<offset>
mov [<segment>:<offset>],ax
If you were to do
mov [<segment>+16], ax

It would take the value stored in <segment> (let's say 3 << 3), add 16 to it (giving you 40), dereference it (per the
convention of the square brackets) and store the result in ax (because you're invoking the mov instruction).

30

	Project 3:�Per-Cpu Variables
	Test distribution	
	Per-CPU Variables
	How to get per-CPU variables
	Segmentation
	X86 Real mode & protected mode
	Slide Number 7
	Segment Registers
	Segment Selectors
	Segment Descriptors
	Descriptor Table
	GDTR & LDTR Registers
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Data structure def: percpu.c and percpu.h
	Inline assembly example:
	Assembly getter setter: percpu.asm
	Initialization: Main.c, Smp.c and Kthread.c
	Getter invocation: Smp.c
	Set up GDT: gdt.c
	Set up GDT: gdt.c
	Set up GDT: Segment.c
	Define segment selector
	Lowlevel.asm
	Set up segment selector: Kthread.c
	Set up LDT: user.h and userseg.c
	Slide Number 28
	HInts
	HInts

