Three easy pieces Intro

Textbook: Three easy pieces

m virtualization
s CPU

= memory
m correctness intuition should be preserved

m concurrency

w virtualize the CPU w/o compromising intuition or correctness
m persistence

= file systems....
m Six Easy Pieces: Richard Feynman - highly recommended

» because physics is twice as hard as computer science

OS History Intro

m Multics
= hierarchical file systems
= dynamic linking
= single level store

m UNIX

= file systems

= protection

= portability

» modularity

= everything is a file: files, 1/O devices, pipes and sockets
= input/output is bytes: 1s | grep pete | sort

s descendents

= linux
= macOS
s GeekOS

This Course Intro

m Very high-level
= synchronization approaches
= queuing theory
= scheduling and resource allocation algorithms
= tests and homeworks are 60% of the grade
m Also very low-level: we are hacking an operating system!
= process creation, signals, pipes
= file systems
m virtual memory
= Projects are 40% of the grade
m Two parts sometimes don't tie together well...

m Both extremely important

Today

m Quick welcome and overview
m Finish up Sections 1,2 of Geekos slides
m Sections 1,2 of Processes

Goal

m Provide a very compact overview of GeekOS

m Much more friendly but older: geekos overview s2017.

This has some content missing (due to latex-to-word conversion),
which can be seen in geekos overview s2015.

https://www.cs.umd.edu/~hollings/cs412/s17/GeekOSoverview.pdf
https://www.cs.umd.edu/~shankar/412-Notes/geekos-overview-s2015.pdf

Outline

Hardware and devices (drivers + interrupt handlers)
Booting and kernel initialization
Kernel threads

User processes
Interrupt-disabling and Spinlocks
Scheduling

Synchronization constructs
Virtual filesystem

. PFAT

10. Blockdev

11. Bufcache

© 0 N o gk w b=

hw-+dev

Hardware configuration
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC | | gma
l l l - ke board dI
RAM VGA | |10 APIC \“"‘D ypoardj L de |
monitor ‘dISkC‘ ‘dISkd‘

m x86 cpus in SMP (symmetric multi-processing) configuration

m apics (interrupt controllers)
m local apic: recv intrpts from io-apic, send/recv to other cpus
= i0-apic: route interpts from io devices/timer to local apics

m diskc: kernel image; pfat filesystem with user programs

m emulated by QEMU running on linux (unix) environment

x86 (CPU) hw+dev

m Has several modes: only “real” and “protected’ modes relevant

m Real mode

= Enters this mode upon power up

= 16-bit machine (Intel 8086)

» 20-bit segmented memory address: 1MB
= 16-bit O (port) address, 256 interrupts

m Protected mode

= Enter this mode upon executing a certain instr in real mode
= 32-bit machine with many more features

= 4 privilege levels: 0 (kernel mode), 1, 2, 3 (user mode)

= 32-bit segmented (+ optional paging) memory address: 4GB
= 16-bit 10 (port) address space, 256 interrupts

» Geekos runs in this mode.
» Rest of this section deals with protected mode

x86: Addressing hw+dev

m Address space: 4GB (32-bit address)

m Segment: a contiguous chunk of address space
= code segment, data segment, stack segment

m Address formed from 16-bit segment selector and 32-bit offset

m Segment selector indexes into a seg descriptor table
= [gdt or Idt, index into table, protection level]
= global descriptor table (gdt), local descriptor table (ldt)

m Yields a 64-bit segment descriptor, which points to a segment
= [base addr, limit, privilege level, etc]

m If paging is on, the address is divided into [dir, page, offset]

x860: Interrupts hw-+dev

m 256 interrupts: 0-31 hw, rest sw (traps, exceptions, faults, etc)
m Interrupt indexes into a interrupt descriptor table (idt)

m Yields a 64-bit interrupt gate, which points to interrupt handler
» [seg selector, offset, descriptor privilege level (dpl), etc]

m If interrupt-handler’s privilege-level = cpu'’s privilege-level:
cpu pushes on its current stack
w its eflags, cs, eip, and an error code (for some interrupts)

m If interrupt-handler’s privilege-level < cpu's privilege-level: cpu
uses another stack whose location is in a task state segment (tss)

» pushes its ss and esp // interrupted task's stack
= pushes eflags, cs, eip, error code (if present)

m Return-from-interrupt (IRET) undoes the above (in both cases)

x86: Registers

eax, ebx, ecx, esi, edi, edx: “general purpose” (32-bit)
esp (32-bit): stack pointer (in ss segment)

ebp (32-bit): frame pointer (in ss segment)

eip (32-bit): instruction pointer (in cs segment)

segment registers (16-bit), each holds a segment selector
= cs (code segment), ss (stack segment)

m ds, es, fs, gs (data segment)

gdtr (48-bit): addr and size of current gdt
idtr (48-bit): addr and size of current idt
Idtr (16-bit): selector to current Idt (via gdt)
tr (16-bit): selector to current tss (via gdt)

eflags (32-bit): carry, overflow, sign, interrupt enable, etc

hw-+dev

crO—crd (32-bit): paging enable, page fault, cache enable, etc.

Local APICs and 10 APIC hw+dev

m BIOS stores APICs config info at certain addresses

m Local APIC info starts at 9xFEE@0000 (APIC_Addr)
w offset @x20 (APIC_ID) stores the apic id (= cpuid) /0,1, ...

m Get_CPU_ID(): // return cpu id of caller thread

= disable interrupts

m apicid < read location APIC_Addr + APIC_ID
m restore interrupts

= return apicid

m |0 APIC info starts at 0xFEC00000 (IO_APIC_Addr)

PIT timer + LAPIC timers hw-+dev

m PIT timer: interrupt TIMER_IRQ (=0)
m Each Local APIC has a timer: interrupt 32
m PIT timer is used only at boot to calibrate the LAPIC timers

m Global and static variables
m g_numTicks // global tick counter
m DEFAULT_MAX_TICKS = 4 // default quantum
m g_Quantum = DEFAULT_MAX_TICKS

LAPIC timer hw-+dev

m Timer_Interrupt_Handler(istate): // simplified

id «+ Get_CPU_ID()

ct < get_current_thread()

if id is 0:
++g_numTicks

++ct.numTicks

if ct.numTicks >= g_Quantum:
g_needReschedule[id]

mInit_Timer():
Install_IRQ(32, Timer_Interrupt_Handler)
enable interrupt 32

m Init_Local_APIC(cpuid):
Install_IRQ(39, Spurious_Interrupt_Handler) // SMP
enable interrupt 39
set timer timeout value // cpu 0 uses PIT to calibrate

VGA screen hw-+dev

m Ports: CRT_x regs (0x3D4, 0x3D5, etc)
m access via io instr // eg, Out_Byte(port, value)
= for refresh, scan rate, blanking, cursor control, etc

m Video memory: VIDMEM (0xb8000 —0x100000)
= holds characters to display ~ // NUMROWS = 25, NUMCOLS = 80
m access via read/write instrs // eg, VIDMEM[offset] = keycode

m Var console_state: row, col, esc, numeric arg, etc

Update_Cursor() based on console state // ports used here only

Init_Screen(): clear screen, set “text cursor’ to origin

[
m Put_Char_Imp(c): place char c at text cursor position
|]
m Print(xfmt, ...)

Keyboard hw+dev

m Ports
= input reg: KB_DATA (0x60)
= control reg: KB_CMD (0x64)
= status regs: KB_OUTPUT_FULL (0x01), KB_KEY_RELEASE (0x80)

m Interrupt: KB_IRQ (1)

m Static variables (for drivers, interrupt handler)

= S_queue // queue for incoming keycodes
= s_keyboardWaitQueue // threads waiting for kbd inputs
= s_kbdQueuelLock // spinlock protecting s_queue
= scantables // map scancode to keycode

kbd state // shift, esc, control, alt, etc

Keyboard hw+dev

m Keyboard_Interrupt_Handler(istate):
if ports indicate byte available:
get byte; convert to keycode or update kbdstate
add keycode to s queue // drop if full; spinlock ops
wakeup(s_keyboardWaitQueue)

m Init_Keyboard():
initialize static variables
Install_IRQ(KB_IRQ, Keyboard_Interrupt_Handler)
enable kbd interrupt

m Wait_For_Key():
disable intrpt
repeat
if s_queue has key, get it // spinlock ops
else wait(s_keyboardWaitQueue)
until got key
restore intrpt

IDE hw+dev

m 16-bit transfer unit

m 2 hard disks

m PIO and DMA modes
m 256-byte blocks

m Ports
= IDE_identify regs // show disk features
= IDE_drive/cylinder/head/sector regs // target disk block
= IDE_command reg // read/write
= IDE_data reg // successive words of io block show up here
» IDE_status/control/etc regs // busy, dma, interrupt, etc

IDE: drivers hw+dev

m Static variables

m s_ideWaitQueue: ide server thread waits here
» s_ideRequestQueue: io requests queued here

m IDE_Read(drive, blocknum, *buffer):
convert blocknum to cylinder, head, sector
update control and command regs
read 256 words from data reg into buffer

m IDE_Write(...): like IDE_Read except write to data reg

m IDE_Request_Thread():
forever: req = dequeue from request queue // blocking
IDE_Read/Write(req) // synchronous, pio

m Init_IDE():
register drives as block devices
start kernel thread executing IDE_Request_Thread()

DMA controller (currently not used) hw-+dev

Registers

= memory addr
» byte count
= control regs (source, destination, transfer unit, etc)

m Usage for ide io

= cpu sets up ide interface to initiate data transfer
= cpu sets up dma interface

Init_DMA()
Reserve_DMA(chan)
Setup_DMA(direction, chan, *addr, size)

Outline

Hardware and devices (drivers + interrupt handlers)
Booting and kernel initialization
Kernel threads

User processes
Interrupt-disabling and Spinlocks
Scheduling

Synchronization constructs
Virtual filesystem

. PFAT

10. Blockdev

11. Bufcache

© 0 N o gk w bbb

Boot init

m At power up, BIOS configures

one cpu-lapic as primary, with id 0

other cpu-lapics as secondaries, halted, with ids 1, 2, ...
= MP config table in memory

loads diskc/block 0 (bootsect.asm) into memory

= cpu 0 (in real mode) starts executing it

m bootsect.asm // executed by cpu 0

= load the kernel image (from diskc) into memory and start
executing it (setup.asm)

m setup.asm // executed by cpu 0

= get memory size, redirect interrupts (bypass BIOS)
= enter protected mode, set cs to KERNEL_CS
= set ds, es, fs, gs, ss to KERNEL_DS, jump to main.c:Main

Kernel initialization: Main()—1 // executed by cpu 0 init

m blank VGA screen

m init cpu O's gdt, gdtr // s_GDT[@]; 1: code seg, 2:data seg
// NUM_GDT_ENTRIES = 32
m organize memory into 4K pages // g_pagelist, s_freelList

m init kernel heap

m init cpu O's tss, tr, gdt[37?] // s_theTSS[0]; one tss per cpu
m init cpu O's idt, idtr // s_IDT[@]
m syscall entry's dpl at user level, others at kernel level

= addresses of interrupt handlers in g_interruptTable[@];
set them to dummy interrupt handler

m init SMP: for each secondary cpu i
= allocate a page for cpu i's kernel stack (CPUs[i].stack)
m start cpu / executing start_secondary_cpu (in setup.asm)
// cpu I does its initialization, then spins until cpu 0 releases it

Kernel initialization: Main()—2 // executed by cpu 0 init

init scheduler(0): create threads // with Kernel_Thread objects
m current thread {Main} // g_currentThreads[0]
m idle thread {Idle-#0} // s_runQueue
= reaper thread {Reaper} // s_runQueue
init traps: 12:stack exception; 13: GPF; 0x90: syscall

init devices: Local_APIC(0), keyboard, IDE, DMA

init PFAT: register filesystem PFAT with vfs

release SMP

= allow each secondary cpu to exit its initialization; wait for that

mount root filesystem
= mount ide@ as PFAT fs at path “/a"

spawn initial process // shell program

hardware shutdown

