
Three easy pieces Intro

Textbook: Three easy pieces

virtualization
CPU
memory
correctness intuition should be preserved

concurrency
virtualize the CPU w/o compromising intuition or correctness

persistence
file systems....

Six Easy Pieces: Richard Feynman - highly recommended
because physics is twice as hard as computer science

OS History Intro

Multics
hierarchical file systems
dynamic linking
single level store

UNIX
file systems
protection
portability
modularity

everything is a file: files, I/O devices, pipes and sockets
input/output is bytes: ls | grep pete | sort

descendents
linux
macOS
GeekOS

This Course Intro

Very high-level
synchronization approaches
queuing theory
scheduling and resource allocation algorithms
tests and homeworks are 60% of the grade

Also very low-level: we are hacking an operating system!
process creation, signals, pipes
file systems
virtual memory
Projects are 40% of the grade

Two parts sometimes don’t tie together well...
Both extremely important

Today Intro

Quick welcome and overview
Finish up Sections 1,2 of Geekos slides
Sections 1,2 of Processes

Goal

Provide a very compact overview of GeekOS

Much more friendly but older: geekos overview s2017.

This has some content missing (due to latex-to-word conversion),
which can be seen in geekos overview s2015.

https://www.cs.umd.edu/~hollings/cs412/s17/GeekOSoverview.pdf
https://www.cs.umd.edu/~shankar/412-Notes/geekos-overview-s2015.pdf

Outline hw+dev

1. Hardware and devices (drivers + interrupt handlers)
2. Booting and kernel initialization
3. Kernel threads
4. User processes
5. Interrupt-disabling and Spinlocks
6. Scheduling
7. Synchronization constructs
8. Virtual filesystem
9. PFAT
10. Blockdev
11. Bufcache

Hardware configuration hw+dev

Local APIC

CPU

IO APICRAM
timer keyboard ide

diskc diskd

Local APIC

CPU

Local APIC

CPU

Local APIC

CPU

VGA
monitor

dma

x86 cpus in SMP (symmetric multi-processing) configuration

apics (interrupt controllers)
local apic: recv intrpts from io-apic, send/recv to other cpus
io-apic: route interpts from io devices/timer to local apics

diskc: kernel image; pfat filesystem with user programs

emulated by QEMU running on linux (unix) environment

x86 (CPU) hw+dev

Has several modes: only “real” and “protected” modes relevant

Real mode
Enters this mode upon power up
16-bit machine (Intel 8086)
20-bit segmented memory address: 1MB
16-bit IO (port) address, 256 interrupts

Protected mode
Enter this mode upon executing a certain instr in real mode
32-bit machine with many more features
4 privilege levels: 0 (kernel mode), 1, 2, 3 (user mode)
32-bit segmented (+ optional paging) memory address: 4GB
16-bit IO (port) address space, 256 interrupts
Geekos runs in this mode.
Rest of this section deals with protected mode

x86: Addressing hw+dev

Address space: 4GB (32-bit address)

Segment: a contiguous chunk of address space
code segment, data segment, stack segment

Address formed from 16-bit segment selector and 32-bit offset

Segment selector indexes into a seg descriptor table
[gdt or ldt, index into table, protection level]
global descriptor table (gdt), local descriptor table (ldt)

Yields a 64-bit segment descriptor, which points to a segment
[base addr, limit, privilege level, etc]

If paging is on, the address is divided into [dir, page, offset]

x86: Interrupts hw+dev

256 interrupts: 0–31 hw, rest sw (traps, exceptions, faults, etc)

Interrupt indexes into a interrupt descriptor table (idt)

Yields a 64-bit interrupt gate, which points to interrupt handler
[seg selector, offset, descriptor privilege level (dpl), etc]

If interrupt-handler’s privilege-level = cpu’s privilege-level:
cpu pushes on its current stack

its eflags, cs, eip, and an error code (for some interrupts)

If interrupt-handler’s privilege-level < cpu’s privilege-level: cpu
uses another stack whose location is in a task state segment (tss)

pushes its ss and esp // interrupted task’s stack
pushes eflags, cs, eip, error code (if present)

Return-from-interrupt (IRET) undoes the above (in both cases)

x86: Registers hw+dev

eax, ebx, ecx, esi, edi, edx: “general purpose” (32-bit)
esp (32-bit): stack pointer (in ss segment)
ebp (32-bit): frame pointer (in ss segment)
eip (32-bit): instruction pointer (in cs segment)

segment registers (16-bit), each holds a segment selector
cs (code segment), ss (stack segment)
ds, es, fs, gs (data segment)

gdtr (48-bit): addr and size of current gdt
idtr (48-bit): addr and size of current idt
ldtr (16-bit): selector to current ldt (via gdt)
tr (16-bit): selector to current tss (via gdt)

eflags (32-bit): carry, overflow, sign, interrupt enable, etc
cr0–cr4 (32-bit): paging enable, page fault, cache enable, etc.

Local APICs and IO APIC hw+dev

BIOS stores APICs config info at certain addresses

Local APIC info starts at 0xFEE00000 (APIC_Addr)
offset 0x20 (APIC_ID) stores the apic id (= cpu id) // 0, 1, ...

Get_CPU_ID(): // return cpu id of caller thread
disable interrupts
apicid read location APIC_Addr + APIC_ID
restore interrupts
return apicid

IO APIC info starts at 0xFEC00000 (IO_APIC_Addr)

PIT timer + LAPIC timers hw+dev

PIT timer: interrupt TIMER_IRQ (=0)
Each Local APIC has a timer: interrupt 32
PIT timer is used only at boot to calibrate the LAPIC timers

Global and static variables
g_numTicks // global tick counter
DEFAULT_MAX_TICKS = 4 // default quantum
g_Quantum = DEFAULT_MAX_TICKS

LAPIC timer hw+dev

Timer_Interrupt_Handler(istate): // simplified
id Get_CPU_ID()
ct get_current_thread()
if id is 0:
++g_numTicks

++ct.numTicks
if ct.numTicks >= g_Quantum:
g_needReschedule[id]

Init_Timer():
Install_IRQ(32, Timer_Interrupt_Handler)
enable interrupt 32

Init_Local_APIC(cpuid):
Install_IRQ(39, Spurious_Interrupt_Handler) // SMP
enable interrupt 39
set timer timeout value // cpu 0 uses PIT to calibrate

VGA screen hw+dev

Ports: CRT_* regs (0x3D4, 0x3D5, etc)
access via io instr // eg, Out_Byte(port, value)
for refresh, scan rate, blanking, cursor control, etc

Video memory: VIDMEM (0xb8000 – 0x100000)
holds characters to display // NUMROWS = 25, NUMCOLS = 80
access via read/write instrs // eg, VIDMEM[offset] = keycode

Var console_state: row, col, esc, numeric arg, etc

Update_Cursor() based on console state // ports used here only
Put_Char_Imp(c): place char c at text cursor position
Init_Screen(): clear screen, set “text cursor” to origin
Print(*fmt, ...)

Keyboard hw+dev

Ports
input reg: KB_DATA (0x60)
control reg: KB_CMD (0x64)
status regs: KB_OUTPUT_FULL (0x01), KB_KEY_RELEASE (0x80)

Interrupt: KB_IRQ (1)

Static variables (for drivers, interrupt handler)
s_queue // queue for incoming keycodes
s_keyboardWaitQueue // threads waiting for kbd inputs
s_kbdQueueLock // spinlock protecting s_queue
scantables // map scancode to keycode
kbd state // shift, esc, control, alt, etc

Keyboard hw+dev

Keyboard_Interrupt_Handler(istate):
if ports indicate byte available:

get byte; convert to keycode or update kbdstate
add keycode to s_queue // drop if full; spinlock ops
wakeup(s_keyboardWaitQueue)

Init_Keyboard():
initialize static variables
Install_IRQ(KB_IRQ, Keyboard_Interrupt_Handler)
enable kbd interrupt

Wait_For_Key():
disable intrpt
repeat

if s_queue has key, get it // spinlock ops
else wait(s_keyboardWaitQueue)

until got key
restore intrpt

IDE hw+dev

16-bit transfer unit
2 hard disks
PIO and DMA modes
256-byte blocks

Ports
IDE_identify regs // show disk features
IDE_drive/cylinder/head/sector regs // target disk block
IDE_command reg // read/write
IDE_data reg // successive words of io block show up here
IDE_status/control/etc regs // busy, dma, interrupt, etc

IDE: drivers hw+dev

Static variables
s_ideWaitQueue: ide server thread waits here
s_ideRequestQueue: io requests queued here

IDE_Read(drive, blocknum, *buffer):
convert blocknum to cylinder, head, sector
update control and command regs
read 256 words from data reg into buffer

IDE_Write(...): like IDE_Read except write to data reg

IDE_Request_Thread():
forever: req = dequeue from request queue // blocking

IDE_Read/Write(req) // synchronous, pio

Init_IDE():
register drives as block devices
start kernel thread executing IDE_Request_Thread()

DMA controller (currently not used) hw+dev

Registers
memory addr
byte count
control regs (source, destination, transfer unit, etc)

Usage for ide io
cpu sets up ide interface to initiate data transfer
cpu sets up dma interface

Init_DMA()

Reserve_DMA(chan)

Setup_DMA(direction, chan, *addr, size)

Outline init

1. Hardware and devices (drivers + interrupt handlers)
2. Booting and kernel initialization
3. Kernel threads
4. User processes
5. Interrupt-disabling and Spinlocks
6. Scheduling
7. Synchronization constructs
8. Virtual filesystem
9. PFAT
10. Blockdev
11. Bufcache

Boot init

At power up, BIOS configures
one cpu-lapic as primary, with id 0
other cpu-lapics as secondaries, halted, with ids 1, 2, ...
MP config table in memory
loads diskc/block 0 (bootsect.asm) into memory
cpu 0 (in real mode) starts executing it

bootsect.asm // executed by cpu 0
load the kernel image (from diskc) into memory and start
executing it (setup.asm)

setup.asm // executed by cpu 0
get memory size, redirect interrupts (bypass BIOS)
enter protected mode, set cs to KERNEL_CS
set ds, es, fs, gs, ss to KERNEL_DS, jump to main.c:Main

Kernel initialization: Main()–1 // executed by cpu 0 init

blank VGA screen

init cpu 0’s gdt, gdtr // s_GDT[0]; 1: code seg, 2: data seg
// NUM_GDT_ENTRIES = 32

organize memory into 4K pages // g_pageList, s_freeList

init kernel heap

init cpu 0’s tss, tr, gdt[3?] // s_theTSS[0]; one tss per cpu
init cpu 0’s idt, idtr // s_IDT[0]

syscall entry’s dpl at user level, others at kernel level
addresses of interrupt handlers in g_interruptTable[0];
set them to dummy interrupt handler

init SMP: for each secondary cpu i
allocate a page for cpu i ’s kernel stack (CPUs[i].stack)
start cpu i executing start_secondary_cpu (in setup.asm)
// cpu i does its initialization, then spins until cpu 0 releases it

Kernel initialization: Main()–2 // executed by cpu 0 init

init scheduler(0): create threads // with Kernel_Thread objects
current thread {Main} // g_currentThreads[0]
idle thread {Idle-#0} // s_runQueue
reaper thread {Reaper} // s_runQueue

init traps: 12: stack exception; 13: GPF; 0x90: syscall

init devices: Local_APIC(0), keyboard, IDE, DMA

init PFAT: register filesystem PFAT with vfs

release SMP
allow each secondary cpu to exit its initialization; wait for that

mount root filesystem
mount ide0 as PFAT fs at path “/a”

spawn initial process // shell program

hardware shutdown

