Operating Systems:
Processes and Threads

keleher, shankar

February 6, 2024

QOutline

© 0 N o R Wb

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes
Inter-Process Communication: Signals

Inter-Process Communication: Internet Sockets

Schedulers

User Perspective Process State

m Process: executing instance of a program

» Threads: active agents of a process
= Address space

= text segment: code
= data segment: global and static
= stack segment, one per thread

= Resources: open files, sockets, pipes

m Code: non-privileged instructions
= including syscalls to access OS services

m All threads execute concurrently (scheduling undefined)

Single-Threaded Process

CPU Memory

¢ code
: static data
i heap

Process

Loading:
Takes on-disk program
and reads it into the
address space of process

Program

Disk
Figure 4.1: Loading: From Program To Process

In the OS Kernel Process State

m Data structures: state of processes

m Process: address space, resources, threads (“kernel threads”)
» kernel thread: user-stack, kernel-stack, processor state
m user thread: user-stack, only per-process kernel-stack, not
visible to kernel
mapping of content to hardware location (eg, memory, disk)
= memory vs disk (swapped out)
= thread status: running, ready, waiting, mode
kernel process: kernel-stack, processor state, no user-level
visibility

m Schedulers, queues:
= short-term: ready — running
= i0 device: waiting — io service — ready
= medium-term: ready/waiting <> swapped-out
= long-term: start — ready
= efficiency and responsiveness

Single-Threaded Process Process State

m PCB (process control block): one per process
= holds enough state to resume the process
= process id (pid)
m processor state: gpr, ip, ps, sp, ...
» address-space: text, data, user-stack, kernel-stack
= mapping to memory/disk

io state: open files/sockets, current positions, access, ...
accounting info: processor time, memory limits, ...

m Status

= running: executing on a processor

= ready (aka runnable): waiting for a processor

= waiting: for a non-processor resource (eg, memory, io, ...)
swapped-out: holds no memory

Multi-Threaded Process Process State

m PCB (process control block): one per process
» address-space: text, data
m o state
= accounting info
TCBs (thread control block): one per thread
m processor state
» user-stack, kernel-stack
= status: running, ready, waiting, ...

m Process swapped-out — all threads swapped out

m Kernel threads operate in two contexts:

= user-mode: executing user code, using user-stack
= kernel-mode: executing kernel code, using kernel-stack

Kernel process

m Process that runs only in the kernel
= asynchronous services: io, reaper, ...
= always in kernel-mode
= TCB (thread control block): one per kernel thread
= holds enough state to resume the thread
= processor state: gpr, ip, ps, sp, ...

= kernel-stack // no user-stack
= status: running, ready, waiting

User threads Process State

m Threads implemented entirely in user process
m not visible or schedulable by kernel

= process might have multiple user threads
» but kernel only sees one

m User code maintains

= TCBs
= signal handlers (for timer/io/etc interrupts)
= dispatcher, scheduler

m OS provides low-level functions via which user process can

m get processor state
= dispatch processor state
= to/from environment variables

m User-level vs kernel-level

= Pro: application-specific scheduling
= Con: cannot exploit additional processors

Disambiguation... Process State

m Different types of threads:
» kernel threads - can be seen and scheduled by the kernel, have
both user and kernel stacks
= user threads - not visible to kernel, only user stacks
m Also kernel processes - threads that execute only in the OS kernel
= term not used as much as the above
= not user visible
= only kernel stack

Process queues -

m Kernel keeps PCBs/TCBs in queues
= new queue: processes to be started
= run queue
ready (aka runnable) queue
io queue(s)
swapped-out queue
terminated queue: processes to be cleaned up

m Transitions between queues

io completion / wakeup
* admit
—

dispatch

io req / wait
kill

medium-term scheduler

QOutline

© 0 N o R Wb

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes
Inter-Process Communication: Signals

Inter-Process Communication: Internet Sockets

Schedulers

Approach 1: Create Process from Scratch Process creation

m CreateProcess(path, context): // GeekOS Spawn()
= read file from file system’s path // executable file
= acquire memory segments // code, data, stack(s), ...
= unpack file into its segments
= create PCB // pid, ...
= update PCB with context // user, directory, ...

= add PCB to ready queue

m Drawback: context has a lot of parameters to set
m Your version of GeekOS only has this type of process creation

Approach 2: Fork-Exec Process creation

m Fork(): creates a copy of the caller process
// returns 0 to child, and child’s pid to parent
= create a duplicate PCB
= except for pid, accounting, pending signals, timers,
outstanding io operations, memory locks, ...
= only one thread in new process (the one that called fork)
= allocate memory and copy parent’s segments
= minimize overhead: copy-on-write; memory-map hardware
= add PCB to the ready queue

m Exec(path, ...): replaces all segments of executing process
= exec[elpv] variants: different ways to pass args, ...
= open files are inherited
» not inherited: pending signals, signal handlers, timers, memory
locks, ...
= environment variables are inherited except with exec[lv]e
m Project 1

QOutline

© o N o g R W=

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes
Inter-Process Communication: Signals

Inter-Process Communication: Internet Sockets

Schedulers

Zombie P miin

m Process A becomes a zombie when
= A executes relevant OS code (intentionally or o/w)

= exit syscall
= illegal op
» exceeds resource limits

= A gets kill signal from a (ancestor) process

m A is moved to terminated queue

m What happens to A’s child process?

= becomes a root process’s child (orphan) // Unix
= is terminated /] VMS

Reap

m Zombie process A is eventually reaped

= its memory is freed
m its parent is signalled (SIGCHILD)
= it waits for parent to do wait() syscall

= parent gets exit status, accounting info, ...

QOutline

© 0 N o R W=

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes
Inter-Process Communication: Signals

Inter-Process Communication: Internet Sockets

Schedulers

POSIX threads user threads

m thread create(thrd, func, arg)

= create a new user thread executing func(arg)
= return pointer to thread info in thrd

m thread yield():

= calling thread goes from running to ready
= scheduler will resume it later

m thread join(thrd):

» wait for thread thrd to finish
m return its exit code

m thread exit(rval):

» terminate caller thread, set caller's exit code to rval
= if a thread is waiting to join, resume that thread

m POSIX threads is an API (not implementation) definition
m can be implemented either as user threads, or kernel threads

Outline

© 0 N o g Wb

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes
Inter-Process Communication: Signals
Inter-Process Communication: Internet Sockets

Schedulers

OS initialization Boot

m Power-up:

= BIOS: disk boot sector — RAM reset address

m processor starts executing contents
m Boot-sector code:

» load kernel code from disk sectors to RAM, start executing
m Kernel initialization:

= identify hardware: memory size, io adaptors, ...
= partition memory: kernel, free, ...
= initialize structures: vm/mmap/io tables, pcb queues, ...
= start daemons: OS processes that run in the background
= idle
= i0-servers
= login/shell process bound to console

mount filesystem(s) in io device(s)

Outline

© 0 N o g Wb

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes
Inter-Process Communication: Signals
Inter-Process Communication: Internet Sockets

Schedulers

Kernel file data structures

e Inode table: has a copy of the inode of every open
vertex (file or directory)
— may differ from the inode in the disk

e Open-file table: has an entry for every open call not
yet succeeded by a close call (across all processes)

Each entry holds:

— current file position, reference count (how many file
descriptors point to the entry), inode pointer, etc.

— Entry is removed when the reference count is 0

e For each process: a file descriptor table, mapping
integers to open-file table entries

© 2016 L. Herman & A. U. Shankar 398

The open-files-table is system wide, and only has refs>1 after fork() or dup().

Opening the same file twice

fd1l= open("file.txt", 0_

RDONLY) ;

fd2= open("file.txt", O_RDONLY);

read(fd2, buffer, 1024);

file descriptor open file table

table
(per process)

/position 0
m- ref. count 1 /

0 inode

1

2 //

3 position 1024

4 ref. count 1
inode

inode table

/
/ permissions 0666

size 50238
type regular file

20

© 2016 L. Herman & A. U. Shankar

Pipes

fd1l= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);

After a fork()

read(fd2, buffer, 1024);

fork();

parent

3 /
4

child

3

4

A

pr

open file table
position
ref.count 2 L~
inode /
position 1024
ref.count 2
inode

© 2016 L. Herman & A. U. Shankar

permissions 0666

size

type

50238

regular file

400

Pipes

Opening a pipe
int pfd[2];
pipe(pfd);

open file table

m- / position n/a

0

ref. count 1 L~

ermissions 0666

1 inode '// p.
2 size 0
3 i type pipe
4 position n/a

ref. count 1

inode

© 2016 L. Herman & A. U. Shankar 406

int pfd[2];
pipe(pfd);
fork();

After a fork()

parent
3
4
child

N~
P

open file table

position n/a
ref. count 2
inode

position n/a

ref. count 2

inode

© 2016 L. Herman & A. U. Shankar

Example pipe-

| inode table entry

permissions 0666
size 0
type pipe

example.c

407

Example: data transfer on pipe from parent to child Pipes

m Process, say A, creates pipe

m A forks, creating child process, say B

m A closes its read-end of pipe, writes to pipe

m B closes its write-end of pipe, reads from pipe

m byte stream: in-chunks need not equal out-chunks

m A blocks if buffer is full and B has not closed read-end

m B blocks if buffer is empty and A has not closed write-end

m read when no data and no writers (write-end has zero ref count):
= read returns 0
m write when no readers (read-end has zero ref count):

= writer process receives SIGPIPE signal
= write returns EPIPE

