
Operating Systems:

Processes and Threads

keleher, shankar

February 6, 2024



Outline Process State

1. Process State
2. Process Creation
3. Process Termination
4. User-Threads Management
5. Booting the OS
6. Inter-Process Communication: Pipes
7. Inter-Process Communication: Signals
8. Inter-Process Communication: Internet Sockets
9. Schedulers



User Perspective Process State

Process: executing instance of a program
Threads: active agents of a process
Address space

text segment: code
data segment: global and static
stack segment, one per thread

Resources: open files, sockets, pipes

Code: non-privileged instructions
including syscalls to access OS services

All threads execute concurrently (scheduling undefined)



Single-Threaded Process Process State



In the OS Kernel Process State

Data structures: state of processes
Process: address space, resources, threads (“kernel threads”)

kernel thread: user-stack, kernel-stack, processor state
user thread: user-stack, only per-process kernel-stack, not
visible to kernel
mapping of content to hardware location (eg, memory, disk)

memory vs disk (swapped out)
thread status: running, ready, waiting, mode
kernel process: kernel-stack, processor state, no user-level
visibility

Schedulers, queues:
short-term: ready ! running
io device: waiting ! io service ! ready
medium-term: ready/waiting $ swapped-out
long-term: start ! ready
efficiency and responsiveness



Single-Threaded Process Process State

PCB (process control block): one per process
holds enough state to resume the process
process id (pid)
processor state: gpr, ip, ps, sp, ...
address-space: text, data, user-stack, kernel-stack

mapping to memory/disk
io state: open files/sockets, current positions, access, ...
accounting info: processor time, memory limits, ...
...

Status
running: executing on a processor
ready (aka runnable): waiting for a processor
waiting: for a non-processor resource (eg, memory, io, ...)
swapped-out: holds no memory



Multi-Threaded Process Process State

PCB (process control block): one per process
address-space: text, data
io state
accounting info
TCBs (thread control block): one per thread

processor state
user-stack, kernel-stack
status: running, ready, waiting, ...

...

Process swapped-out ! all threads swapped out

Kernel threads operate in two contexts:
user-mode: executing user code, using user-stack
kernel-mode: executing kernel code, using kernel-stack



Kernel process Process State

Process that runs only in the kernel
asynchronous services: io, reaper, ...
always in kernel-mode
TCB (thread control block): one per kernel thread

holds enough state to resume the thread
processor state: gpr, ip, ps, sp, ...
kernel-stack // no user-stack
status: running, ready, waiting



User threads Process State

Threads implemented entirely in user process
not visible or schedulable by kernel

process might have multiple user threads
but kernel only sees one

User code maintains
TCBs
signal handlers (for timer/io/etc interrupts)
dispatcher, scheduler

OS provides low-level functions via which user process can
get processor state
dispatch processor state
to/from environment variables

User-level vs kernel-level
Pro: application-specific scheduling
Con: cannot exploit additional processors



Disambiguation... Process State

Different types of threads:
kernel threads - can be seen and scheduled by the kernel, have
both user and kernel stacks
user threads - not visible to kernel, only user stacks

Also kernel processes - threads that execute only in the OS kernel
term not used as much as the above
not user visible
only kernel stack



Process queues Process State

Kernel keeps PCBs/TCBs in queues
new queue: processes to be started
run queue
ready (aka runnable) queue
io queue(s)
swapped-out queue
terminated queue: processes to be cleaned up

Transitions between queues

swapped−out

new terminatedreadyadmit waiting

kill

running
io req / wait

io completion / wakeup

timer

dispatch

medium−term scheduler



Outline Process creation

1. Process State
2. Process Creation
3. Process Termination
4. User-Threads Management
5. Booting the OS
6. Inter-Process Communication: Pipes
7. Inter-Process Communication: Signals
8. Inter-Process Communication: Internet Sockets
9. Schedulers



Approach 1: Create Process from Scratch Process creation

CreateProcess(path, context): // GeekOS Spawn()
read file from file system’s path // executable file
acquire memory segments // code, data, stack(s), ...
unpack file into its segments
create PCB // pid, ...
update PCB with context // user, directory, ...
add PCB to ready queue

Drawback: context has a lot of parameters to set
Your version of GeekOS only has this type of process creation



Approach 2: Fork-Exec Process creation

Fork(): creates a copy of the caller process
// returns 0 to child, and child’s pid to parent

create a duplicate PCB
except for pid, accounting, pending signals, timers,
outstanding io operations, memory locks, ...
only one thread in new process (the one that called fork)

allocate memory and copy parent’s segments
minimize overhead: copy-on-write; memory-map hardware

add PCB to the ready queue

Exec(path, ...): replaces all segments of executing process
exec[elpv] variants: different ways to pass args, ...
open files are inherited
not inherited: pending signals, signal handlers, timers, memory
locks, ...
environment variables are inherited except with exec[lv]e

Project 1



Outline Process termination

1. Process State
2. Process Creation
3. Process Termination
4. User-Threads Management
5. Booting the OS
6. Inter-Process Communication: Pipes
7. Inter-Process Communication: Signals
8. Inter-Process Communication: Internet Sockets
9. Schedulers



Zombie Process termination

Process A becomes a zombie when
A executes relevant OS code (intentionally or o/w)

exit syscall
illegal op
exceeds resource limits
...

A gets kill signal from a (ancestor) process

A is moved to terminated queue

What happens to A’s child process?
becomes a root process’s child (orphan) // Unix
is terminated // VMS



Reap Process termination

Zombie process A is eventually reaped
its memory is freed
its parent is signalled (SIGCHILD)
it waits for parent to do wait() syscall

parent gets exit status, accounting info, ...



Outline user threads

1. Process State
2. Process Creation
3. Process Termination
4. User-Threads Management
5. Booting the OS
6. Inter-Process Communication: Pipes
7. Inter-Process Communication: Signals
8. Inter-Process Communication: Internet Sockets
9. Schedulers



POSIX threads user threads

thread_create(thrd, func, arg)
create a new user thread executing func(arg)
return pointer to thread info in thrd

thread_yield():
calling thread goes from running to ready
scheduler will resume it later

thread_join(thrd):
wait for thread thrd to finish
return its exit code

thread_exit(rval):
terminate caller thread, set caller’s exit code to rval
if a thread is waiting to join, resume that thread

POSIX threads is an API (not implementation) definition
can be implemented either as user threads, or kernel threads



Outline Boot

1. Process State
2. Process Creation
3. Process Termination
4. User-Threads Management
5. Booting the OS
6. Inter-Process Communication: Pipes
7. Inter-Process Communication: Signals
8. Inter-Process Communication: Internet Sockets
9. Schedulers



OS initialization Boot

Power-up:
BIOS: disk boot sector ! RAM reset address
processor starts executing contents

Boot-sector code:
load kernel code from disk sectors to RAM, start executing

Kernel initialization:
identify hardware: memory size, io adaptors, ...
partition memory: kernel, free, ...
initialize structures: vm/mmap/io tables, pcb queues, ...
start daemons: OS processes that run in the background

idle
io-servers
login/shell process bound to console

mount filesystem(s) in io device(s)



Outline Pipes

1. Process State
2. Process Creation
3. Process Termination
4. User-Threads Management
5. Booting the OS
6. Inter-Process Communication: Pipes
7. Inter-Process Communication: Signals
8. Inter-Process Communication: Internet Sockets
9. Schedulers



Pipes

398

Kernel file data structures
● Inode table: has a copy of the inode of every open 

vertex (file or directory)
– may differ from the inode in the disk

● Open-file table: has an entry for every open call not 
yet succeeded by a close call (across all processes)

Each entry holds:
– current file position, reference count (how many file 

descriptors point to the entry), inode pointer, etc.
– Entry is removed when the reference count is 0

● For each process: a file descriptor table, mapping 
integers to open-file table entries

© 2016 L. Herman & A. U. Shankar

The open-files-table is system wide, and only has refs>1 after fork() or dup().



Pipes

399

open file table

Opening the same file twice
fd1= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);
read(fd2, buffer, 1024);

FD
0
1
2
3
4

open-file entry 1
position 0
ref. count 1
inode

open-file entry 2
position 1024
ref. count 1
inode

inode table entry
permissions 0666

size 50238
type regular file

...

inode table entry

.. …

inode table
file descriptor 

table
(per process)

© 2016 L. Herman & A. U. Shankar



Pipes

400

FD
...

3
4

open file table

After a fork()
fd1= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);
read(fd2, buffer, 1024);
fork();

open file 1
position 0
ref. count 2
inode

open file 2
position 1024
ref. count 2
inode

inode table entry
permissions 0666
size 50238
type regular file

...

FD
...

3

4

parent

child

© 2016 L. Herman & A. U. Shankar



Pipes

406

open file table

Opening a pipe
int pfd[2];
pipe(pfd);

FD
0
1
2
3
4

open file (read)
position n/a
ref. count 1
inode

open file (write)
position n/a
ref. count 1
inode

inode table entry
permissions 0666
size 0
type pipe

...

© 2016 L. Herman & A. U. Shankar



Pipes

407

After a fork()
int pfd[2];
pipe(pfd);
fork();

FD
...

3
4

open file table
open file (read)
position n/a
ref. count 2
inode

open file (write)
position n/a
ref. count 2
inode

inode table entry
permissions 0666
size 0
type pipe

...
FD

...
3
4

parent

child

Example pipe-example.c
© 2016 L. Herman & A. U. Shankar



Example: data transfer on pipe from parent to child Pipes

Process, say A, creates pipe
A forks, creating child process, say B

A closes its read-end of pipe, writes to pipe
B closes its write-end of pipe, reads from pipe
byte stream: in-chunks need not equal out-chunks
A blocks if buffer is full and B has not closed read-end
B blocks if buffer is empty and A has not closed write-end

read when no data and no writers (write-end has zero ref count):
read returns 0

write when no readers (read-end has zero ref count):
writer process receives SIGPIPE signal
write returns EPIPE


