
Operating Systems:
Processes and Threads

keleher, shankar

February 13, 2024

Outline GOS: kthread

1. Kernel threads

2. User processes

3. Inter-Process Communication: Signals

4. Inter-Process Communication: Internet Sockets

5. Schedulers

Kernel threads: state and queues GOS: kthread

state of a kernel thread:
Kernel_Thread struct + stack page

struct Kernel_Thread:
esp, *stackPage, *userContext
link for s_allThreadList // constant
link for current thread queue // runq, waitq, graveyard
numTicks, totalTime, priority, pid, joinq, exitcode, owner, ...

Thread queues
s_allThreadList // all threads
s_runQueue // ready (aka runnable) threads
s_graveyardQueue // ended and to be reaped
various waitQueues //mutex, condition, devices, etc
*g_currentThreads[MAX_CPUS] // running thread

Starting kernel-only threads GOS: kthread

Start_Kernel_Thread(startfunc, arg, priority, detached, name):

Create_Thread:
get memory for kthread context (struct and stack page)
init struct: stackPage, esp, numTicks, pid
add to the all-thread-list

Setup_Kernel_Thread:
configure stack so that upon switching in it executes
Launch_Thread, then startfunc, then Shutdown_Thread
// stack (bottom to top):
// startfunc arg, Shutdown_Thread addr, startfunc addr
// 0 (eflags), KERNEL_CS (cs), Launch_Thread addr (eip)
// fake error code, intrpt#, fake gp regs
// KERNEL_DS (ds), KERNEL_DS (es), 0 (fs), 0 (gs)

Make thread runnable: add struct to runq

Current thread GOS: kthread

CURRENT_THREAD: // return the thread struct of the caller
disable interrupts
ct ← g_currentThreads[GET_CPU_ID]
restore interrupts

Outline GOS: user process

1. Kernel threads

2. User processes

3. Inter-Process Communication: Signals

4. Inter-Process Communication: Internet Sockets

5. Schedulers

User process context GOS: user process

Context of a user process:
Kernel_Thread struct + stack page + struct User_Context

struct User_Context:
name[]
ldt[2] // code segment, data segment
*ldtDescriptor // segment descriptor
*memory, size //memory space for process
ldtSelector // index into gdt
csSelector, dsSelector // index into ldt
entryAddr, argBlockAddr, stackPointerAddr
*pageDir, *file_descriptor_table[]
refCount, mappedRegions, etc

Spawn user process GOS: user process

Spawn(program, cmd, *kthread, background):
read executable file from filesystem // vfs, pfat
unpack elf header and content, extract exeFormat // elf
mem ← malloc(program maxva + argblock size + stack page)
copy program segments into mem space
malloc usercontext and set its fields:
*memory ← mem
ldt, ldt selectors/descriptors
entry point, argblock, stack bottom, ...

*kthread ← Start_User_Thread(userContext)

Start user thread GOS: user process

Start_User_Thread(uc, detached): // “uc” is “usercontext”

Create_Thread:
malloc kthread struct and stack, init, add to all-thread-list

Setup_User_Thread:
point kthread.usercontext to uc
configure kernel stack as if it was interrupted in user mode
// stack (bottom to top):
// uc.ds (user ss), uc.stackaddr (user esp)
// eflags (intrpt on), uc.cs (cs), uc.entryaddr (eip)
// errorcode, intrpt#, gp regs except esi // fake
// uc.argblockaddr (esi), uc.ds (ds, es, fs, gs)

// How is termination handled?

Make thread runnable: add struct to runq

Copying between user and kernel spaces GOS: user process

User_To_Kernel(usercontext, userptr): // kernel addr of useraddr
return usercontext.memory + userptr

Copy_From_User(dstInKernel, srcInUser, bufsize):
ucontext ← CURRENT_THREAD.usercontext
srcInKernel ← User_To_Kernel(ucontext, srcInUser)
memcpy(dstInKernel, srcInKernel, bufsize)

Copy_To_User(dstInUser, srcInKernel, bufsize):
ucontext ← CURRENT_THREAD.usercontext
dstInKernel ← User_To_Kernel(ucontext, dstInUser)
memcpy(dstInKernel, srcInKernel, bufsize)

Outline Signals

1. Kernel threads

2. User processes

3. Inter-Process Communication: Signals

4. Inter-Process Communication: Internet Sockets

5. Schedulers

Signals: user perspective Signals

Process-level interrupt with a small integer argument n (0..255)
SIGKILL, SIGCHILD, SIGSTOP, SIGSEGV, SIGILL, SIGPIPE, ...

Who can send a signal to a process P :
another process (same user/ admin) // syscall kill(pid , n)
kernel
P itself

When P gets a signal n, it executes a “signal handler”, say sh

signal n is pending until P starts executing sh
for each n, at most one signal n can be pending at P
at any time, P can be executing at most one signal handler

Each n has a default handler: ignore signal, terminate P , ...
P can register handlers for some signals // syscall signal(sh, n)
if so, P also registers a trampoline function,
which issues syscall complete_handler

Signals: implementation Signals

P ’s pcb has
pending bit for each n // true iff signal n pending
ongoing bit // true iff any signal handler is being executed

When P gets a signal n, kernel sets pending n.
Causes sh to execute at some point when P is not running

When kernel-handled pending n and not ongoing :
kernel sets ongoing , clears pending n, starts executing its sh
when sh ends, kernel unsets ongoing .

When user-handled pending n, not ongoing, and P in user mode:
kernel sets ongoing , clears pending n,
saves P ’s stack(s) somewhere and modifies them so that
P will enter sh with argument n
P will return from sh and enter trampoline

when P returns to kernel (via complete_handler),
kernel clears ongoing and restores P ’s stack(s)

Stacks when handling user-level signal (x86 style) Signals

user stack kernel stack
prior to resuming P in user mode, signal n pending

ustack0 istate0
usp0

- istate0: interrupt state of process P
- usp0: top of user stack

prior to resuming P at sh in user mode
ustack0
n
trampoline

istate1
usp1

- istate1: istate0 with eip ← sh
- usp1: usp0 − sizeof(n, &trampoline)

just after executing syscall complete_handler
ustack0
n

istate2
usp2

just prior to resuming P at istate0
ustack0 istate0

usp0
- istate0 and usp0 restored

Outline Sockets

1. Kernel threads

2. User processes

3. Inter-Process Communication: Signals

4. Inter-Process Communication: Internet Sockets

5. Schedulers

Internet Streaming Sockets Sockets

Two-way data path: client process ↔ server process

Server:
ss ← socket(INET, STREAMING) // get a socket
bind(ss, server port)
client addr:port ← accept(ss)
send(ss, data) // byte stream
data ← recv(ss) // byte stream
close(ss) // returns when remote also closes

Client
sc ← socket(INET, STREAMING) // get a socket
status ← connect(sc, server addr:port) // returns sucess or fail
send(sc, data) // byte stream
data ← recv(sc) // byte stream
close(sc)

Sockets

client servertcp socket tcp socket

A Bx1 x2

close() close()

[ip addr, tcp port]

data

open to x1

accept()

connect(x2)

open

send(data)

recv()
data

send(data)

recv()

bind(x2)

tcp closing handshake

tcp opening handshake

tcp data transfer

Outline Scheduler

1. Kernel threads

2. User processes

3. Inter-Process Communication: Signals

4. Inter-Process Communication: Internet Sockets

5. Schedulers

Schedulers Scheduler

swapped−out

new terminatedready
admit

waiting

kill

running
io req / wait

io completion / wakeup

timer

dispatch

medium−term scheduler

Short-term (milliseconds) : ready → running
high utilization: fraction of time processor doing useful work
low wait-time: time spent in ready queue per process
fairness / responsiveness: wait-time vs processor time

Medium-term (seconds): ready/waiting ↔ swapped-out
avoid bottleneck processor/device (eg, thrashing)
ensure fairness
not relevant for single-user systems (eg, laptops, workstations)

Short-term: Non-Preemptive Scheduler

Non-preemptive: running −→/ ready

Wait-time of a process: time it spends in ready queue

FIFO
arrival joins at tail // from waiting, new or suspended
departure leaves from head // to running
favors long processes over short ones
favors processor-bound over io-bound
high wait-time: short process stuck behind long process

Shortest-Job-First (SJF)
assumes processor times of ready PCBs are known
departure is one with smallest processor time
minimizes wait-time

Fixed-priority for processes: eg: system, foreground, background

Short-term: Preemptive – 1 Scheduler

Preemptive: running −→ ready

Wait-time of a process: total time it spends in ready queue

Round-Robin
FIFO with time-slice preemption of running process
arrival from running, waiting, new or suspended
all processes get same rate of service
overhead increases with decreasing timeslice
ideal: timeslice slightly greater than typical cpu burst

Short-term: Preemptive – 2 Scheduler

Multi-level Feedback Queue
priority of a process depends on its history
decreases with accumulated processor time

queue 1, 2, · · · , queue N // decreasing priority
departure comes from highest-priority non-empty queue
arrival coming not from running:
joins queue 1

arrival coming from running
joins queue min(i + 1,N) // i was arrival’s previous level

To avoid starvation of long processes
longer timeslice for lower-priority queues
after a process spends a specified time in low-priority queue
move it to a higher-priority queue
...

	Kernel threads
	User processes
	Inter-Process Communication: Signals
	Inter-Process Communication: Internet Sockets
	Schedulers

