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Kernel threads: state and queues GOS: kthread

state of a kernel thread:
Kernel_Thread struct + stack page

struct Kernel_Thread:
esp, *stackPage, *userContext
link for s_allThreadList // constant
link for current thread queue // runq, waitq, graveyard
numTicks, totalTime, priority, pid, joinq, exitcode, owner, ...

Thread queues
s_allThreadList // all threads
s_runQueue // ready (aka runnable) threads
s_graveyardQueue // ended and to be reaped
various waitQueues //mutex, condition, devices, etc
*g_currentThreads[MAX_CPUS] // running thread



Starting kernel-only threads GOS: kthread

Start_Kernel_Thread(startfunc, arg, priority, detached, name):

Create_Thread:
get memory for kthread context (struct and stack page)
init struct: stackPage, esp, numTicks, pid
add to the all-thread-list

Setup_Kernel_Thread:
configure stack so that upon switching in it executes
Launch_Thread, then startfunc, then Shutdown_Thread
// stack (bottom to top):
// startfunc arg, Shutdown_Thread addr, startfunc addr
// 0 (eflags), KERNEL_CS (cs), Launch_Thread addr (eip)
// fake error code, intrpt#, fake gp regs
// KERNEL_DS (ds), KERNEL_DS (es), 0 (fs), 0 (gs)

Make thread runnable: add struct to runq



Current thread GOS: kthread

CURRENT_THREAD: // return the thread struct of the caller
disable interrupts
ct ← g_currentThreads[GET_CPU_ID]
restore interrupts
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User process context GOS: user process

Context of a user process:
Kernel_Thread struct + stack page + struct User_Context

struct User_Context:
name[]
ldt[2] // code segment, data segment
*ldtDescriptor // segment descriptor
*memory, size //memory space for process
ldtSelector // index into gdt
csSelector, dsSelector // index into ldt
entryAddr, argBlockAddr, stackPointerAddr
*pageDir, *file_descriptor_table[]
refCount, mappedRegions, etc



Spawn user process GOS: user process

Spawn(program, cmd, *kthread, background):
read executable file from filesystem // vfs, pfat
unpack elf header and content, extract exeFormat // elf
mem ← malloc(program maxva + argblock size + stack page)
copy program segments into mem space
malloc usercontext and set its fields:
*memory ← mem
ldt, ldt selectors/descriptors
entry point, argblock, stack bottom, ...

*kthread ← Start_User_Thread(userContext)



Start user thread GOS: user process

Start_User_Thread(uc, detached): // “uc” is “usercontext”

Create_Thread:
malloc kthread struct and stack, init, add to all-thread-list

Setup_User_Thread:
point kthread.usercontext to uc
configure kernel stack as if it was interrupted in user mode
// stack (bottom to top):
// uc.ds (user ss), uc.stackaddr (user esp)
// eflags (intrpt on), uc.cs (cs), uc.entryaddr (eip)
// errorcode, intrpt#, gp regs except esi // fake
// uc.argblockaddr (esi), uc.ds (ds, es, fs, gs)

// How is termination handled?

Make thread runnable: add struct to runq



Copying between user and kernel spaces GOS: user process

User_To_Kernel(usercontext, userptr): // kernel addr of useraddr
return usercontext.memory + userptr

Copy_From_User(dstInKernel, srcInUser, bufsize):
ucontext ← CURRENT_THREAD.usercontext
srcInKernel ← User_To_Kernel(ucontext, srcInUser)
memcpy(dstInKernel, srcInKernel, bufsize)

Copy_To_User(dstInUser, srcInKernel, bufsize):
ucontext ← CURRENT_THREAD.usercontext
dstInKernel ← User_To_Kernel(ucontext, dstInUser)
memcpy(dstInKernel, srcInKernel, bufsize)
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Signals: user perspective Signals

Process-level interrupt with a small integer argument n (0..255)
SIGKILL, SIGCHILD, SIGSTOP, SIGSEGV, SIGILL, SIGPIPE, ...

Who can send a signal to a process P :
another process (same user/ admin) // syscall kill(pid , n)
kernel
P itself

When P gets a signal n, it executes a “signal handler”, say sh

signal n is pending until P starts executing sh
for each n, at most one signal n can be pending at P
at any time, P can be executing at most one signal handler

Each n has a default handler: ignore signal, terminate P , ...
P can register handlers for some signals // syscall signal(sh, n)
if so, P also registers a trampoline function,
which issues syscall complete_handler



Signals: implementation Signals

P ’s pcb has
pending bit for each n // true iff signal n pending
ongoing bit // true iff any signal handler is being executed

When P gets a signal n, kernel sets pending n.
Causes sh to execute at some point when P is not running

When kernel-handled pending n and not ongoing :
kernel sets ongoing , clears pending n, starts executing its sh
when sh ends, kernel unsets ongoing .

When user-handled pending n, not ongoing, and P in user mode:
kernel sets ongoing , clears pending n,
saves P ’s stack(s) somewhere and modifies them so that
P will enter sh with argument n
P will return from sh and enter trampoline

when P returns to kernel (via complete_handler),
kernel clears ongoing and restores P ’s stack(s)



Stacks when handling user-level signal (x86 style) Signals

user stack kernel stack
prior to resuming P in user mode, signal n pending

ustack0 istate0
usp0

- istate0: interrupt state of process P
- usp0: top of user stack

prior to resuming P at sh in user mode
ustack0
n
trampoline

istate1
usp1

- istate1: istate0 with eip ← sh
- usp1: usp0 − sizeof(n, &trampoline)

just after executing syscall complete_handler
ustack0
n

istate2
usp2

just prior to resuming P at istate0
ustack0 istate0

usp0
- istate0 and usp0 restored
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Internet Streaming Sockets Sockets

Two-way data path: client process ↔ server process

Server:
ss ← socket(INET, STREAMING) // get a socket
bind(ss, server port)
client addr:port ← accept(ss)
send(ss, data) // byte stream
data ← recv(ss) // byte stream
close(ss) // returns when remote also closes

Client
sc ← socket(INET, STREAMING) // get a socket
status ← connect(sc, server addr:port) // returns sucess or fail
send(sc, data) // byte stream
data ← recv(sc) // byte stream
close(sc)



Sockets

client servertcp socket tcp socket

A Bx1 x2

close( ) close( )

[ip addr, tcp port]

data

open to x1

accept( )

connect(x2)

open

send(data)

recv( )
data

send(data)

recv( )

bind(x2)

tcp closing handshake

tcp opening handshake

tcp data transfer
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Schedulers Scheduler

swapped−out

new terminatedready
admit

waiting

kill

running
io req / wait

io completion / wakeup

timer

dispatch

medium−term scheduler

Short-term (milliseconds) : ready → running
high utilization: fraction of time processor doing useful work
low wait-time: time spent in ready queue per process
fairness / responsiveness: wait-time vs processor time

Medium-term (seconds): ready/waiting ↔ swapped-out
avoid bottleneck processor/device (eg, thrashing)
ensure fairness
not relevant for single-user systems (eg, laptops, workstations)



Short-term: Non-Preemptive Scheduler

Non-preemptive: running −→/ ready

Wait-time of a process: time it spends in ready queue

FIFO
arrival joins at tail // from waiting, new or suspended
departure leaves from head // to running
favors long processes over short ones
favors processor-bound over io-bound
high wait-time: short process stuck behind long process

Shortest-Job-First (SJF)
assumes processor times of ready PCBs are known
departure is one with smallest processor time
minimizes wait-time

Fixed-priority for processes: eg: system, foreground, background



Short-term: Preemptive – 1 Scheduler

Preemptive: running −→ ready

Wait-time of a process: total time it spends in ready queue

Round-Robin
FIFO with time-slice preemption of running process
arrival from running, waiting, new or suspended
all processes get same rate of service
overhead increases with decreasing timeslice
ideal: timeslice slightly greater than typical cpu burst



Short-term: Preemptive – 2 Scheduler

Multi-level Feedback Queue
priority of a process depends on its history
decreases with accumulated processor time

queue 1, 2, · · · , queue N // decreasing priority
departure comes from highest-priority non-empty queue
arrival coming not from running:
joins queue 1

arrival coming from running
joins queue min(i + 1,N) // i was arrival’s previous level

To avoid starvation of long processes
longer timeslice for lower-priority queues
after a process spends a specified time in low-priority queue
move it to a higher-priority queue
...
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