Operating Systems:
Processes and Threads

keleher

February 19, 2024

QOutline

ARl o

Scheduling

Interrupt-disabling and Spinlocks
GeekOS Scheduling
Multi-Threaded Programs

Locks and condition variables

Short-term: Preemptive — 2 Scheduling

m Multi-level Feedback Queue

= priority of a process depends on its history
» decreases with accumulated processor time

= queue 1, 2, ---, queue N // decreasing priority
= departure comes from highest-priority non-empty queue
= arrival coming not from running:

= joins queue 1
= arrival coming from running
= joins queue min(i + 1, N) // i was arrival’s previous level

= To avoid starvation of long processes
= longer timeslice for lower-priority queues
= after a process spends a specified time in low-priority queue
move it to a higher-priority queue

Lottery Scheduling -

m Give each job a specific percentage of CPU. Achieve by:
= each job has tickets proportional to desired share
» each re-schedule point randomly selects a winning lottery ticket

Lottery Scheduling Scheduling

m Give each job a specific percentage of CPU. Achieve by:

= each job has tickets proportional to desired share

» each re-schedule point randomly selects a winning lottery ticket
m Example: Want A to get twice as much time as B:

= give A two tickets

= give B one ticket

= random choose a ticket at each schedule quantum

Lottery Scheduling Scheduling

m Give each job a specific percentage of CPU. Achieve by:
= each job has tickets proportional to desired share
» each re-schedule point randomly selects a winning lottery ticket
m Example: Want A to get twice as much time as B:
= give A two tickets
= give B one ticket
= random choose a ticket at each schedule quantum
m Why randomness good?
m fast: just choose a ticket at random
= very little state, don’t need to track history, etc.
= avoids nasty corner cases
m Other
= easily handles different policies: priorities, aging...
= handles priority inversion
= if low-priority holds lock wanted by high-priority A
= temporarily give A’s tickets to B

Multiprocessor Scheduling Scheduling

m Set of ready processes is shared
m So scheduling involves
= get lock on ready queue
= ensure it is not in a remote processor's cache
= choose a process (based on its usage of processor, resources, ...)

m Process may acquire affinity to a processor (ie, to its cache)
= makes sense to respect this affinity when scheduling

m Per-processor ready queues simplifies scheduling, ensures affinity
» but risk of unfairness and load imbalance

m Could dedicate some processors to long-running processes
and others to short/interactive processes

QOutline

ARl o

Scheduling

Interrupt-disabling and Spinlocks
GeekOS Scheduling
Multi-Threaded Programs

Locks and condition variables

Interrupt disable/enable: affects only this CPU GOS: spinlocks

Disable_Interrupts(): // abbrv: disable intrpt
__asm__ "cli”

Enable_Interrupts(): // abbrv: enable intrpt
__asm__ "sti"

Begin_Int_Atomic(): // abbrv: disable intrpt
ion <« true iff interrupts enabled
if ion:

Disable_Interrupts()
return ion

End_Int_Atomic(ion): // abbrv: restore intrpt
if ion:
Enable_Interrupts()

Spinlocks GOS: spinlocks

m Spinlock in assembly: an int that is 0 iff unlocked

Spin_Lock _INTERNAL (x): Spin_Unlock_INTERNAL (x):
repeat set eax to 0
busy wait until *x is @ atomically swap eax and *x

set eax to 1
atomically swap eax and *x
until eax equals @
m Spinlock in C: struct {lock, locker, ra, lastlocker}
m Spin_Lock(x): wrapper of assembly fn + update to locker, ra, ...
u Spln Unlock(x) 1 I I I I I 1

m Ensure interrupts disabled before acquiring a spinlock // Why?

m Restore interrupts after releasing a spinlock

Some spinlock variables -

m globallLock // lockKernel(), unlockKernel(); smp.c
m kthreadlLock // kthread.c, user.c
m Every list_t in DEFINE_LIST(/ist_t, node_t) has a spinlock lock

= Guards the list in list operations (append, remove, etc)
» eg, Thread_Queue: s_graveyardQueue.lock, waitQueue.lock

m pidLock // k.thread.c
m kbdQueuelock // keyboard.c
m s_free_space_spin_lock // paging.c
m run_queue_spinlock // sched.c

m mutex->guard // synch.c

Are spinlocks a good idea? -

m Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?

Are spinlocks a good idea? -

m Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?
= consumes cycles spinning
» prevents other threads from running
»but does not access memory

Are spinlocks a good idea? -

m Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?
= consumes cycles spinning
» prevents other threads from running
»but does not access memory

m Mutex expects interrupts to be enabled

Are spinlocks a good idea? -

m Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?

= consumes cycles spinning
» prevents other threads from running
»but does not access memory

m Mutex expects interrupts to be enabled
= might need to block

QOutline

ARl o

Scheduling

Interrupt-disabling and Spinlocks
GeekOS Scheduling
Multi-Threaded Programs

Locks and condition variables

How GeekOS Handles interrupts -

m High level view:
= assume thread arrived via interrupt (external, trap, exception)
= construct interrupt state of current thread
= call the C interrupt handler,

How GeekOS Handles interrupts -

m High level view:
= assume thread arrived via interrupt (external, trap, exception)
= construct interrupt state of current thread
= call the C interrupt handler,
= and then either:
= resume the current thread

How GeekOS Handles interrupts GOS: sched

m High level view:
= assume thread arrived via interrupt (external, trap, exception)
= construct interrupt state of current thread
= call the C interrupt handler,
= and then either:
= resume the current thread
s switch_to_thread from the run (“ready”) queue

How GeekOS Handles interrupts GOS: sched

m High level view:
= assume thread arrived via interrupt (external, trap, exception)
= construct interrupt state of current thread
= call the C interrupt handler,
= and then either:
= resume the current thread
s switch_to_thread from the run (“ready”) queue

m Low level view: // in lowlevel.asm
= push cpu’s gp and seg regs // complete interrupt-state
= call C interrupt handler // with ptr to interrupt-state as arg

if not g_preemptionDisabled and g_needReschedule:
move current thread to rung
update current thread's state wrt esp, numticks
get a thread from runq and make it current
activate user context (if any) // update Idtr, s_TSS, ...
process signal (if any)
restore gp and seg regs

Switching a thread GOS: sched

m Switch_To_Thread(thrdptr): // in lowlevel.asm

// called from Schedule(). interrupts off.

// using current thread’s kernel stack. stack has return addr.

// current thread struct already in runq or a waitq.

// save current thread context, activate thread passed as param.

= change stack content to an intrpt state by adding:
cs, eflags, fake errorcode/intrpt#, gp and seg regs
= set threadptr (in arg) as current thread
= activate user context (if any) // update Ildtr, s_TSS, ...
= process signal (if any)
= clear APIC interrupt info
= restore gp and seg regs
m iret

Scheduling GOS: sched

m Flags checked at every potential switch:
= g_preemptionDisabled[MAX_CPUS]
= g_needReschedule[MAX_CPUS]

m Schedule():

» // current thread voluntarily giving up cpu,
// eg, Wait(), Mutex_Lock(), Cond_Lock(), Yield().
// current thread already in runq or a waitq.

= set g_preemptionDisabled[this cpu] to false
= runme < remove a thread from rung
= Switch_To_Thread(runme)

m Schedule_And_Unlock(x): // x is a spinlock
m like Schedule() but unlocks x before Switch_To_Thread(runme)

Outline

ARl R

Scheduling

Interrupt-disabling and Spinlocks
GeekOS Scheduling
Multi-Threaded Programs

Locks and condition variables

Multi-threaded programs (chapters 26-28, 30-32) overview

m Multiple threads executing concurrently in the same address space
m Threads interact by reading and writing shared memory

m Need to ensure that threads do not “interfere” with each other
m For example, given a linked list X
= while a thread is adding an item to X, another thread should
not read or write X.

= if thread u blocks when it finds X empty, another thread should
not insert an item in between u finding X empty and blocking

m Formalizing “non-interference”™

a code chunk S in a program is atomic if while a thread v is
executing S, no other thread can change an intermediate state
of u's execution of S.

Synchronization Constructs

m Programming languages usually provide:
» locks, condition variables, semaphores, ...

m Canonical synchronization problems
= mutual-exclusion, readers-writers, producer-consumer, ...

Outline

ARl R

Scheduling

Interrupt-disabling and Spinlocks
GeekOS Scheduling
Multi-Threaded Programs

Locks and condition variables

Locks lock+cv

m Lock operations: acquire and release
m Ick < Lock() // define a lock

m Ick.acq() // acquire the lock; blocking

= call only if caller does not hold Ick
= returns only when no other thread holds Ick

m Ick.rel() // release the lock; non-blocking
= call only if caller holds Ick

m Ick.rel() does not give priority to threads blocked in Ick.acq()

Condition variables lock4cv

m Condition variable operations: wait, signal and signal _all
m A condition variable is associated with a lock

m cv < Condition(lck) // condition variable associated with Ick

m cv.wait() // wait on cv; blocking

= call only if caller already holds Ick
= atomically release Ick and wait on cv
when awakened: acquire Ick and return

m cv.signal() // signal cv; non-blocking

= call only if caller holds Ick
= wake up a thread (if any) waiting on cv

m cv.signal _all() // wake up all threads waiting on cv

m Ick.acq() does not give priority to threads blocked in cv.wait()

	Scheduling
	Interrupt-disabling and Spinlocks
	GeekOS Scheduling
	Multi-Threaded Programs
	Locks and condition variables

