
Operating Systems:
Processes and Threads

keleher

February 19, 2024

Outline Scheduling

1. Scheduling

2. Interrupt-disabling and Spinlocks

3. GeekOS Scheduling

4. Multi-Threaded Programs

5. Locks and condition variables

Short-term: Preemptive – 2 Scheduling

Multi-level Feedback Queue
priority of a process depends on its history
decreases with accumulated processor time

queue 1, 2, · · · , queue N // decreasing priority
departure comes from highest-priority non-empty queue
arrival coming not from running:

joins queue 1
arrival coming from running

joins queue min(i + 1,N) // i was arrival’s previous level

To avoid starvation of long processes
longer timeslice for lower-priority queues
after a process spends a specified time in low-priority queue
move it to a higher-priority queue

Lottery Scheduling Scheduling

Give each job a specific percentage of CPU. Achieve by:
each job has tickets proportional to desired share
each re-schedule point randomly selects a winning lottery ticket

Example: Want A to get twice as much time as B:
give A two tickets
give B one ticket
random choose a ticket at each schedule quantum

Why randomness good?
fast: just choose a ticket at random
very little state, don’t need to track history, etc.
avoids nasty corner cases

Other
easily handles different policies: priorities, aging...
handles priority inversion

if low-priority holds lock wanted by high-priority A
temporarily give A’s tickets to B

Lottery Scheduling Scheduling

Give each job a specific percentage of CPU. Achieve by:
each job has tickets proportional to desired share
each re-schedule point randomly selects a winning lottery ticket

Example: Want A to get twice as much time as B:
give A two tickets
give B one ticket
random choose a ticket at each schedule quantum

Why randomness good?
fast: just choose a ticket at random
very little state, don’t need to track history, etc.
avoids nasty corner cases

Other
easily handles different policies: priorities, aging...
handles priority inversion

if low-priority holds lock wanted by high-priority A
temporarily give A’s tickets to B

Lottery Scheduling Scheduling

Give each job a specific percentage of CPU. Achieve by:
each job has tickets proportional to desired share
each re-schedule point randomly selects a winning lottery ticket

Example: Want A to get twice as much time as B:
give A two tickets
give B one ticket
random choose a ticket at each schedule quantum

Why randomness good?
fast: just choose a ticket at random
very little state, don’t need to track history, etc.
avoids nasty corner cases

Other
easily handles different policies: priorities, aging...
handles priority inversion

if low-priority holds lock wanted by high-priority A
temporarily give A’s tickets to B

Multiprocessor Scheduling Scheduling

Set of ready processes is shared
So scheduling involves

get lock on ready queue
ensure it is not in a remote processor’s cache

choose a process (based on its usage of processor, resources, ...)

Process may acquire affinity to a processor (ie, to its cache)
makes sense to respect this affinity when scheduling

Per-processor ready queues simplifies scheduling, ensures affinity
but risk of unfairness and load imbalance

Could dedicate some processors to long-running processes
and others to short/interactive processes

Outline GOS: spinlocks

1. Scheduling

2. Interrupt-disabling and Spinlocks

3. GeekOS Scheduling

4. Multi-Threaded Programs

5. Locks and condition variables

Interrupt disable/enable: affects only this CPU GOS: spinlocks

Disable_Interrupts(): // abbrv: disable intrpt
__asm__ "cli"

Enable_Interrupts(): // abbrv: enable intrpt
__asm__ "sti"

Begin_Int_Atomic(): // abbrv: disable intrpt
ion ← true iff interrupts enabled
if ion:
Disable_Interrupts()

return ion

End_Int_Atomic(ion): // abbrv: restore intrpt
if ion:

Enable_Interrupts()

Spinlocks GOS: spinlocks

Spinlock in assembly: an int that is 0 iff unlocked

Spin_Lock_INTERNAL(x):
repeat

busy wait until *x is 0
set eax to 1
atomically swap eax and *x

until eax equals 0

Spin_Unlock_INTERNAL(x):
set eax to 0
atomically swap eax and *x

Spinlock in C: struct {lock, locker, ra, lastlocker}

Spin_Lock(x): wrapper of assembly fn + update to locker, ra, ...

Spin_Unlock(x): " " " " " " "

Ensure interrupts disabled before acquiring a spinlock // Why?

Restore interrupts after releasing a spinlock

Some spinlock variables GOS: spinlocks

globalLock // lockKernel(), unlockKernel(); smp.c

kthreadLock // kthread.c, user.c

Every list_t in DEFINE_LIST(list_t, node_t) has a spinlock lock

Guards the list in list operations (append, remove, etc)
eg, Thread_Queue: s_graveyardQueue.lock, waitQueue.lock

pidLock // k.thread.c

kbdQueueLock // keyboard.c

s_free_space_spin_lock // paging.c

run_queue_spinlock // sched.c

mutex->guard // synch.c

Are spinlocks a good idea? GOS: spinlocks

Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?

consumes cycles spinning
prevents other threads from running
....but does not access memory

Mutex expects interrupts to be enabled
might need to block

Are spinlocks a good idea? GOS: spinlocks

Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?

consumes cycles spinning
prevents other threads from running
....but does not access memory

Mutex expects interrupts to be enabled
might need to block

Are spinlocks a good idea? GOS: spinlocks

Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?

consumes cycles spinning
prevents other threads from running
....but does not access memory

Mutex expects interrupts to be enabled

might need to block

Are spinlocks a good idea? GOS: spinlocks

Project 1 handout describes spinlocks as “quite possibly not a
good synchronization tool”. Why?

consumes cycles spinning
prevents other threads from running
....but does not access memory

Mutex expects interrupts to be enabled
might need to block

Outline GOS: sched

1. Scheduling

2. Interrupt-disabling and Spinlocks

3. GeekOS Scheduling

4. Multi-Threaded Programs

5. Locks and condition variables

How GeekOS Handles interrupts GOS: sched

High level view:
assume thread arrived via interrupt (external, trap, exception)
construct interrupt state of current thread
call the C interrupt handler,

and then either:
resume the current thread
switch_to_thread from the run (“ready”) queue

Low level view: // in lowlevel.asm
push cpu’s gp and seg regs // complete interrupt-state
call C interrupt handler // with ptr to interrupt-state as arg
if not g_preemptionDisabled and g_needReschedule:

move current thread to runq
update current thread’s state wrt esp, numticks
get a thread from runq and make it current

activate user context (if any) // update ldtr, s_TSS, ...
process signal (if any)
restore gp and seg regs
iret

How GeekOS Handles interrupts GOS: sched

High level view:
assume thread arrived via interrupt (external, trap, exception)
construct interrupt state of current thread
call the C interrupt handler,
and then either:

resume the current thread

switch_to_thread from the run (“ready”) queue
Low level view: // in lowlevel.asm

push cpu’s gp and seg regs // complete interrupt-state
call C interrupt handler // with ptr to interrupt-state as arg
if not g_preemptionDisabled and g_needReschedule:

move current thread to runq
update current thread’s state wrt esp, numticks
get a thread from runq and make it current

activate user context (if any) // update ldtr, s_TSS, ...
process signal (if any)
restore gp and seg regs
iret

How GeekOS Handles interrupts GOS: sched

High level view:
assume thread arrived via interrupt (external, trap, exception)
construct interrupt state of current thread
call the C interrupt handler,
and then either:

resume the current thread
switch_to_thread from the run (“ready”) queue

Low level view: // in lowlevel.asm
push cpu’s gp and seg regs // complete interrupt-state
call C interrupt handler // with ptr to interrupt-state as arg
if not g_preemptionDisabled and g_needReschedule:

move current thread to runq
update current thread’s state wrt esp, numticks
get a thread from runq and make it current

activate user context (if any) // update ldtr, s_TSS, ...
process signal (if any)
restore gp and seg regs
iret

How GeekOS Handles interrupts GOS: sched

High level view:
assume thread arrived via interrupt (external, trap, exception)
construct interrupt state of current thread
call the C interrupt handler,
and then either:

resume the current thread
switch_to_thread from the run (“ready”) queue

Low level view: // in lowlevel.asm
push cpu’s gp and seg regs // complete interrupt-state
call C interrupt handler // with ptr to interrupt-state as arg
if not g_preemptionDisabled and g_needReschedule:

move current thread to runq
update current thread’s state wrt esp, numticks
get a thread from runq and make it current

activate user context (if any) // update ldtr, s_TSS, ...
process signal (if any)
restore gp and seg regs
iret

Switching a thread GOS: sched

Switch_To_Thread(thrdptr): // in lowlevel.asm
// called from Schedule(). interrupts off.
// using current thread’s kernel stack. stack has return addr.
// current thread struct already in runq or a waitq.
// save current thread context, activate thread passed as param.

change stack content to an intrpt state by adding:
cs, eflags, fake errorcode/intrpt#, gp and seg regs

set threadptr (in arg) as current thread
activate user context (if any) // update ldtr, s_TSS, ...
process signal (if any)
clear APIC interrupt info
restore gp and seg regs
iret

Scheduling GOS: sched

Flags checked at every potential switch:
g_preemptionDisabled[MAX_CPUS]
g_needReschedule[MAX_CPUS]

Schedule():
// current thread voluntarily giving up cpu,
// eg, Wait(), Mutex_Lock(), Cond_Lock(), Yield().
// current thread already in runq or a waitq.
set g_preemptionDisabled[this cpu] to false
runme ← remove a thread from runq
Switch_To_Thread(runme)

Schedule_And_Unlock(x): // x is a spinlock
like Schedule() but unlocks x before Switch_To_Thread(runme)

Outline overview

1. Scheduling

2. Interrupt-disabling and Spinlocks

3. GeekOS Scheduling

4. Multi-Threaded Programs

5. Locks and condition variables

Multi-threaded programs (chapters 26-28, 30-32) overview

Multiple threads executing concurrently in the same address space

Threads interact by reading and writing shared memory

Need to ensure that threads do not “interfere” with each other
For example, given a linked list X

while a thread is adding an item to X , another thread should
not read or write X .
if thread u blocks when it finds X empty, another thread should
not insert an item in between u finding X empty and blocking

Formalizing “non-interference”:
a code chunk S in a program is atomic if while a thread u is
executing S , no other thread can change an intermediate state
of u’s execution of S .

Synchronization Constructs overview

Programming languages usually provide:
locks, condition variables, semaphores, ...

Canonical synchronization problems
mutual-exclusion, readers-writers, producer-consumer, ...

Outline lock+cv

1. Scheduling

2. Interrupt-disabling and Spinlocks

3. GeekOS Scheduling

4. Multi-Threaded Programs

5. Locks and condition variables

Locks lock+cv

Lock operations: acquire and release

lck ← Lock() // define a lock

lck.acq() // acquire the lock; blocking
call only if caller does not hold lck
returns only when no other thread holds lck

lck.rel() // release the lock; non-blocking
call only if caller holds lck

lck.rel() does not give priority to threads blocked in lck.acq()

Condition variables lock+cv

Condition variable operations: wait, signal and signal_all
A condition variable is associated with a lock

cv ← Condition(lck) // condition variable associated with lck

cv.wait() // wait on cv; blocking
call only if caller already holds lck
atomically release lck and wait on cv
when awakened: acquire lck and return

cv.signal() // signal cv; non-blocking
call only if caller holds lck
wake up a thread (if any) waiting on cv

cv.signal_all() // wake up all threads waiting on cv

lck.acq() does not give priority to threads blocked in cv.wait()

	Scheduling
	Interrupt-disabling and Spinlocks
	GeekOS Scheduling
	Multi-Threaded Programs
	Locks and condition variables

