
Operating Systems:
Processes and Threads

keleher

February 20, 2024

Outline Sync

1. Synchronization

2. Bounded counter

Locks Sync

Lock operations: acquire and release

lck ← Lock() // define a lock

lck.acq() // acquire the lock; blocking
call only if caller does not hold lck
returns only when no other thread holds lck

lck.rel() // release the lock; non-blocking
call only if caller holds lck

lck.rel() does not give priority to threads blocked in lck.acq()

Condition variables Sync

Condition variable operations: wait, signal and signal_all
A condition variable is associated with a lock

cv ← Condition(lck) // condition variable associated with lck

cv.wait() // wait on cv; blocking
call only if caller already holds lck
atomically release lck and wait on cv
when awakened: acquire lck and return

cv.signal() // signal cv; non-blocking
call only if caller holds lck
wake up a thread (if any) waiting on cv

cv.signal_all() // wake up all threads waiting on cv

lck.acq() does not give priority to threads blocked in cv.wait()

Why do conditionals have associated locks Sync

Conditionals Sync

Two cases:
1. parent creates child, continues running:
1.1 parent acquires lock
1.2 checks for child done (no)
1.3 go to sleep via wait()
1.4 child eventually runs, exits
1.5 parent wakes

2. child runs immediately
2.1 child signals, exits
2.2 parent wakes

Conditionals Sync

What if we didn’t have the done state variable?

Fine if parent runs first....

Conditionals Sync

What if we didn’t have the associated lock?

Not good if parent check, then child runs....
Referred to as a “TOCTOU” (Time_Of_Check to
Time_Of_Use) vulnerability

Semaphores Sync

Semaphore: variable with a non-negative integer count
Semaphore operations: P() and V()

sem ← Semaphore(N) // define semaphore with count N (≥ 0)

sem.P() // blocking
wait until sem.count > 0 then decrease sem.count by 1; return
checking sem.count> 0 and decrementing are one atomic step

sem.V() // non-blocking
atomically increase sem.count by 1; return

V() does not give priority to threads blocked in P()

Recall hypothetical await Sync

await B : S , where S is a code chunk (no blocking or infinite
loop) and B is a boolean condition (no side effects):

execute S only if B holds, all in one atomic step
if B does not hold, wait

atomic S : short for await True: S
Example: Given a linked list x with non-blocking functions add()
and rmv(). To allow multiple threads to call these functions
simultaneously, simply wrap them as follows:
await True : add()
await (xnotempty) : rmv()

Progress assumption Sync

For a multi-threaded program to achieve anything, we have to
assume that its threads execute with non-zero speed (but
otherwise arbitrarily varying)

Making this precise is simple for non-blocking statements but not
for blocking statements (eg, acquire, wait, P, await)

A thread at an non-blocking statement T eventually gets past T
Achieved if every unblocked thread periodically gets cpu cycles

A thread at a blocking statement T eventually gets past T if T
is continuously unblocked or repeatedly (but not continuously)
unblocked

Achieved in most implementations only in a probabilistic sense,
not in a deterministic sense

Outline bounded counter

1. Synchronization

2. Bounded counter

Bounded counter bounded counter

Program P0:
x, y: global int variables; initially 0

up(), down() // callable by multiple threads simultaneously
up() increments x only if x < 100, and returns 2*x
down() decrements x only if x > 0, and returns 2*x

up():
int z
await (x < 100):

x ← x+1
z ← x

return 2*z

down():
int z
await (x > 0):

x ← x-1
z ← x

return 2*z

P0 → lock-cv program P1 bounded counter

Program P1:
x, y // as in P0
lck ← Lock()
cvNF ← Condition(lck) // for guard (x < 100)
cvNE ← Condition(lck) // for guard (x > 0)

up():
int z
lck.acq()
while (not x < 100):

cvNF.wait()
x ← x + 1
z ← x
cvNE.signal()
lck.rel()
return 2*z

down():
int z
lck.acq()
while (not x > 0):

cvNE.wait()
x ← x - 1
z ← x
cvNF.signal()
lck.rel()
return 2*z

P0 → lock-cv program P2 bounded counter

Program P2:
x, y // as in P0
lck ← Lock()
cv ← Condition(lck) // for both guards

up():
int z
lck.acq()
while (not x < 100):

cv.wait()
x ← x + 1
z ← x
cv.signal_all()
lck.rel()
return 2*z

down():
int z
lck.acq()
while (not x > 0):

cv.wait()
x ← x - 1
z ← x
cv.signal_all()
lck.rel()
return 2*z

P0 → semaphore program P3 (via P1) bounded counter

Program P3:
x, y // as in P1
mutex ← Semaphore(1) // for lck
gateNF ← Semaphore(0) // for cvNF
gateNE ← Semaphore(0) // for cvNE

up():
int z
mutex.P()
while (not x < 100)

mutex.V()
gateNF.P()
mutex.P()

x ← x + 1
z ← x
gateNE.V()
mutex.V()
return ← 2*z

down():
int z
mutex.P()
while (not x > 0)

mutex.V()
gateNE.P()
mutex.P()

x ← x - 1
z ← x
gateNF.V()
mutex.V()
return ← 2*z

	Synchronization
	Bounded counter

