
Operating Systems 412
Pete Keleher

● But what are our goals?
● mutual exclusion

● on one section of code
● on multiple sections of code that access the same state

● fairness
● fair share
● free of starvation
● deadlock-free

● performance
● wait time
● aggregate overhead of synchronization

Locks! and synchronization in general

● What are our mechanisms?
● disabling interrupts

● pretty much all we need if single core
● but

▪ privileged instruction
▪ need to trust thread
▪ not efficient
▪ doesn’t work on multiprocessors

● atomic instructions
● test-and-set

▪ set memory location to value, returning old value
● compare-and-swap

▪ store at memory location only if it equals specific value
● load-linked store

▪ load from memory location
▪ store new value to same location (only if it has not been updated)

Locks! and synchronization in general

Producer-Consumer flawed take 1
c11
c12
c13 block

p1
p2
p4
p5 c1 ready Q!
p6
p1
p2
p3

c21
c22
c24
c25 c1 ready Q!
c26
c21
c22
c23

c14 crash

● What was the problem?
● between c1 adding to ready Q and calling get(), the world

changed

● Getting signaled() is only a hint that the world has changed
● need to check again
● and do so atomically w/ the get()

● Semantics
● this is Mesa semantics
● Hoare semantics imply a signaled thread runs immediately

Most systems assume Mesa semantics. You should too. Even if
not strictly necessary.

Producer-Consumer flawed take 1

Producer-Consumer flawed take 2
But there’s still
a bug….

c11
c12
c13 blocks

c21
c22
c23 blocks

p1, p2, p4
p5 c1 ready Q!
p6
p1
p2
p3 p blocks

c12
c14
c15 c2 ready Q!!!
…
c13 c1 blocks

c22
c23 c2 blocks

everyone blocked!

Assume buffer size 1,
initially empty,
2 consumers, 1 producer

Producer-Consumer correct take 3
c11
c12
c13 blocks

c21
c22
c23 blocks

p1, p2, p4
p5 c1 ready Q!
p6
p1
p2
p3 p blocks

c12
c14
c15 p ready Q!

all good!

Memory allocation covering condition
ta alloc(100) blocks
tb alloc(10) blocks
tc free(50)

Which thread to wake?
- wake ’em all!

- might be inefficient
- but correct

“covering condition”

Assume initially no memory available.

Semaphores

● wait()
● decrement value by one
● wait if value is negative

● post()
● increment value by one
● if one or more threads waiting: wake one

The value, when negative, is equal to the number of waiting
threads.

Semantics
● mutex locks

● “binary semaphore”
● lock by calling wait()
● unlock by calling post()
● initial value of

● ordering primitive
● “counting semaphore”
● parent waiting for child, sharing a semaphore

● parent calls wait()
● child calls post()
● initial value?

In general, how to determine the initial value?
● how many of your resources you are willing to give out?

0

1

Credits

All figures from Arpaci-Dusseau and Arpaci-Dusseau.

