
Operating Systems 412
Pete Keleher

Producer-Consumer preface

Prod-Cons semaphores
Assume MAX = 1,
initially empty,
1 consumer, 1 producer

Assume MAX = 10,
initially empty,
1 consumer, 1 producer

Prod-Cons semaphores, flawed

Problem is we are not
enforcing mutual exclusion
over the put() and get().

Need to add mutual
exclusion back in!

Prod-Cons semaphores, fixed Deadlock!Deadlock!

empty buffer
consumer runs, blocks
producer runs, blocks

Prod-Cons semaphores fixed, again

Dining Philosophers! semaphores

from Wikipedia

What could go wrong?

Dining Philosophers! semaphores

● What could go wrong?
● deadlock

● The problem:
● symmetry

● Fix:
● introduce some asymmetry

Reader-writer Locks
Either:
● one or more readers, or
● a single writer
may be in the critical section at one time.

Issues?

Reader-writer Locks semaphores

readers

writer

Issues?
How to fix?

● How to enforce mutual exclusion?
● use a simple flag on memory
● essentially a spinlock w/ just no atomic instr

● Issues:
● correctness?
● performance?

typedef struct { int flag; } lock_t;

void init(lock_t *mutex) {
mutex->flag = 0;

}

void lock(lock_t *mutex) {
while (mutex->flag == 1) (1)

; (2)
mutex->flag = 1; (3)

}

void unlock lock_t *mutex) {
mutex->flag = 0; (5)

}

t11
context switch

t21
t23
context switch

t13
both now in mutex

typedef struct { int flag; } lock_t;

void init(lock_t *mutex) {
mutex->flag = 0;

}

void lock(lock_t *mutex) {
while (mutex->flag == 1) (1)

; (2)
mutex->flag = 1; (3)

}

void unlock lock_t *mutex) {
mutex->flag = 0; (5)

}

t2t1

Mutual Exclusion just loads + stores

Mutual Exclusion peterson’s algorithm
int flag[2] = {false, false};

int turn;

P0: flag[0] = true;
 turn = 1;
 while (flag[1] && turn == 1)
 {
 // busy wait
 }

 // critical section
 ...
 // end of critical section

 flag[0] = false;

P1: flag[1] = true;
 turn = 0;
 while (flag[0] && turn == 0)
 {
 // busy wait
 }

 // critical section
 ...
 // end of critical section

 flag[1] = false;

● Preemption?

● Mutual exclusion?
● Progress?

● Note that ordinary loads and stores aren’t atomic anymore….

● What can we do w/ atomic instructions ??
● spinlock!
● work on multi-core machine?

Spin_Lock_INTERNAL:
 mov ecx, [esp+4]

.still_locked_early:
 mov eax, [ecx]
 test eax, eax
 jnz .still_locked_early

.seems_unlocked:
 mov eax, 1
 xchg eax, [ecx]
 test eax, eax
 jnz Spin_Lock_INTERNAL
 inc dword [lockops]
 ret

————————————————————————————-

Spin_Unlock_INTERNAL:
 mov ecx, [esp+4]
 mov eax, 0
 xchg eax, [ecx]
 ret

Mutual Exclusion atomic instructions

Yes! In fact it’s an important
use case…

Finishing Up mutual exclusion
● disabling interrupts

● doesn’t help w/ multi-core

● using only loads and stores
● very cumbersome, inflexible

● using atomic instructions
● works through memory, which is shared across cores/cpus

● locks / condition variables / semaphores
● uses atomic instructions and blocking
● more efficient
● probably more correct than your code

CP
ready

•
•

•
•

•
•

IO

Queuing Theory without probabilities

● Queueing system
● servers + waiting rooms
● customers arrive, wait, get served, depart or go to next server
● queueing disciplines

● non-preemptive: fifo, priority, …
● preemptive: round-robin, multi-level feedback, ...

● Operating systems are examples of queueing systems
● servers: hw/sw resources (cpu, disk, req handler, …)
● customers: PCBs, TCBs, ...

● Given: arrival rates, service times, queueing disciplines, ...
● Obtain: queue sizes, response times, fairness, bottlenecks, ...

Queuing Theory without probabilities

● Consider cars traveling on a road with a turn
● each car takes 3 seconds to go through the turn
● at most one car can be in the turn at any time

● N(t): # cars in the turn and waiting to enter the turn

● Load < 1: stable w/ waits depending on burstiness
● Load > 1: unstable, ever-increasing waits

arrival rate 1/4
load 3/4
uniform t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arrival rate 1/4
load 3/4
uniform

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Queuing Theory without probabilities

● Assume unending stream of customers:
● arrival rate or X: # arrivals per second
● average service time S: work needed per customer
● average response time R: departure time D - arrival time A
● average wait time W: response time - service time
● throughput X: # departures per sec averaged over all time
● average customers in system N: waiting or busy
● utilization U: fraction of time server is busy

● Typical goal
● Given: arrival rate, avg service time, queueing discipline
● Obtain: average response time, average queue size

● Little’s Law (for any steady-state system):
●

λ

N = λ × R

Queuing Theory without probabilities

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 3.0 + 4.0 + 4.0
3 = 11.5

3

W = 0.0 + 2.0 + 3.5
3 = 5.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 11.5

3 = 11.5
10

FCFS non-preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
4.0
6.0
7.0

Ri
3.0
4.0
4.5

Wi

0.0
2.0
3.5

C1
arr

C2
arr

C3
arr

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals/sec

● Utilization:

● Average number customers:

R = 3.0 + 5.0 + 2.5
3 = 10.5

3

W = 0.0 + 3.0 + 1.5
3 = 4.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.5

3 = 10.5
10

SJF non-preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

C1
arr

C2
arr

Di
4.0
7.0
5.0

Ri
3.0
5.0
2.5

Wi

0.0
3.0
1.5

C3
arr

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 4.0 + 5.0 + 1.0
3 = 10.0

3

W = 1.0 + 3.0 + 0.0
3 = 4.0

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.0

3 = 10
10

SJS preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
5.0
7.0
3.5

Ri
4.0
5.0
1.0

Wi

1.0
3.0
0.0

C1
arr

C2
arr

C3
arr

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 6.0 + 4.0 + 2.5
3 = 12.5

3

W = 3.0 + 2.0 + 1.5
3 = 6.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 12.5

3 = 12.5
10

RR preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
7.0
6.0
5.0

Ri
6.0
4.0
2.5

Wi

3.0
2.0
1.5

C1
arr

C2
arr

C3
arr

