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Producer-Consumer preface



Prod-Cons semaphores
Assume MAX = 1, 
initially empty, 
1 consumer, 1 producer

Assume MAX = 10, 
initially empty, 
1 consumer, 1 producer

Prod-Cons semaphores, flawed

Problem is we are not  
enforcing mutual exclusion 
over the put() and get(). 

Need to add mutual  
exclusion back in!



Prod-Cons semaphores, fixed Deadlock!Deadlock! 

empty buffer 
consumer runs, blocks 
producer runs, blocks

Prod-Cons semaphores fixed, again



Dining Philosophers! semaphores

from  Wikipedia

What could go wrong?

Dining Philosophers! semaphores

● What could go wrong? 
● deadlock 

● The problem: 
● symmetry 

● Fix: 
● introduce some asymmetry



Reader-writer Locks
Either: 
● one or more readers, or 
● a single writer 
may be in the critical section at one time.

Issues?

Reader-writer Locks semaphores

readers

writer

Issues? 
How to fix?



● How to enforce mutual exclusion? 
● use a simple flag on memory 
● essentially a spinlock w/ just no atomic instr 

● Issues: 
● correctness? 
● performance?

typedef struct { int flag; } lock_t; 

void init(lock_t *mutex) { 
mutex->flag = 0; 

} 

void lock(lock_t *mutex) {       
while (mutex->flag == 1)    (1) 

;                      (2) 
mutex->flag = 1;            (3) 

} 

void unlock lock_t *mutex) { 
mutex->flag = 0;            (5) 

}

t11 
context switch 

t21 
t23 
context switch 

t13  
both now in mutex

typedef struct { int flag; } lock_t; 

void init(lock_t *mutex) { 
mutex->flag = 0; 

} 

void lock(lock_t *mutex) {       
while (mutex->flag == 1)    (1) 

;                      (2) 
mutex->flag = 1;            (3) 

} 

void unlock lock_t *mutex) { 
mutex->flag = 0;            (5) 

}

t2t1

Mutual Exclusion just loads + stores

Mutual Exclusion peterson’s algorithm
int flag[2] = {false, false};

int turn;

P0:  flag[0] = true;
     turn = 1;
     while (flag[1] && turn == 1)
     {
          // busy wait
     }

     // critical section
         ...
     // end of critical section

     flag[0] = false;

P1:  flag[1] = true;
     turn = 0;
     while (flag[0] && turn == 0)
     {
          // busy wait
     }

     // critical section
         ...
     // end of critical section

     flag[1] = false;

● Preemption? 

● Mutual exclusion? 
● Progress? 

● Note that ordinary loads and stores aren’t atomic anymore….



● What can we do w/ atomic instructions ?? 
● spinlock! 
● work on multi-core machine?

Spin_Lock_INTERNAL:
     mov     ecx, [esp+4]

.still_locked_early:
     mov eax, [ecx]
     test eax, eax
     jnz .still_locked_early

.seems_unlocked:
     mov     eax, 1
     xchg    eax, [ecx]         
     test    eax, eax
     jnz     Spin_Lock_INTERNAL
     inc     dword [lockops]
     ret

————————————————————————————-

Spin_Unlock_INTERNAL:
     mov     ecx, [esp+4]
     mov     eax, 0
     xchg    eax, [ecx]
     ret

Mutual Exclusion atomic instructions

Yes! In fact it’s an important 
use case…

Finishing Up mutual exclusion
● disabling interrupts 

● doesn’t help w/ multi-core 

● using only loads and stores 
● very cumbersome, inflexible 

● using atomic instructions 
● works through memory, which is shared across cores/cpus 

● locks / condition variables / semaphores 
● uses atomic instructions and blocking  
● more efficient 
● probably more correct than your code



CP
ready 
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IO 

Queuing Theory without probabilities

● Queueing system 
● servers + waiting rooms  
● customers arrive, wait, get served, depart or go to next server  
● queueing disciplines  

● non-preemptive: fifo, priority, … 
● preemptive: round-robin, multi-level feedback, ...  

● Operating systems are examples of queueing systems  
● servers: hw/sw resources (cpu, disk, req handler, …) 
● customers: PCBs, TCBs, ...  

● Given: arrival rates, service times, queueing disciplines, ...  
● Obtain: queue sizes, response times, fairness, bottlenecks, ... 

Queuing Theory without probabilities



● Consider cars traveling on a road with a turn 
● each car takes 3 seconds to go through the turn 
● at most one car can be in the turn at any time  

● N(t): # cars in the turn and waiting to enter the turn  

● Load < 1: stable w/ waits depending on burstiness 
● Load > 1: unstable, ever-increasing waits

arrival rate 1/4 
load 3/4 
uniform t 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

arrival rate 1/4 
load 3/4 
uniform

t 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

Queuing Theory without probabilities

● Assume unending stream of customers: 
● arrival rate  or X:  # arrivals per second 
● average service time S:  work needed per customer 
● average response time R:  departure time D - arrival time A 
● average wait time W:  response time - service time 
● throughput X: # departures per sec averaged over all time 
● average customers in system N:  waiting or busy 
● utilization U:  fraction of time server is busy 

● Typical goal 
● Given: arrival rate, avg service time, queueing discipline 
● Obtain: average response time, average queue size 

● Little’s Law (for any steady-state system):  
●

λ

N = λ × R

Queuing Theory without probabilities



● System becomes empty at time 7 —> stable 
● Average response time:    sec 

● Average wait time:    sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:    

● Average number customers:  

R = 3.0 + 4.0 + 4.0
3 = 11.5

3

W = 0.0 + 2.0 + 3.5
3 = 5.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 11.5

3 = 11.5
10

FCFS non-preemptive

repeats every 10 seconds
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● System becomes empty at time 7 —> stable 
● Average response time:  sec 

● Average wait time:  sec 

● Arrival rate = throughput:   arrivals/sec 

● Utilization:  

● Average number customers: 

R = 3.0 + 5.0 + 2.5
3 = 10.5

3

W = 0.0 + 3.0 + 1.5
3 = 4.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.5

3 = 10.5
10

SJF non-preemptive

repeats every 10 seconds

t
 0  1  2  3  4  5  6  7 

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

C1
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arr



● System becomes empty at time 7 —> stable 
● Average response time:  sec 

● Average wait time:  sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:  

● Average number customers: 

R = 4.0 + 5.0 + 1.0
3 = 10.0

3

W = 1.0 + 3.0 + 0.0
3 = 4.0

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.0

3 = 10
10

SJS preemptive

repeats every 10 seconds

t
 0  1  2  3  4  5  6  7 

customer Ai Si
1
2
3

1.0
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● System becomes empty at time 7 —> stable 
● Average response time:   sec 

● Average wait time:  sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:  

● Average number customers: 

R = 6.0 + 4.0 + 2.5
3 = 12.5

3

W = 3.0 + 2.0 + 1.5
3 = 6.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 12.5

3 = 12.5
10

RR preemptive

repeats every 10 seconds

t
 0  1  2  3  4  5  6  7 

customer Ai Si
1
2
3

1.0
2.0
2.5
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Wi

3.0
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1.5

C1
arr

C2
arr

C3
arr


