Operating Systems 412

Pete Keleher

Queuing Theory without probabilities

CP
ready

A
Ity

/l\
ﬁ{
l \

}




Queuing Theory without probabilities

Queueing system
e servers + waiting rooms
e customers arrive, wait, get served, depart or go to next server
e Queueing disciplines
e non-preemptive: fifo, priority, ...
e preemptive: round-robin, multi-level feedback, ...

Operating systems are examples of queueing systems
e servers: hw/sw resources (cpu, disk, req handler, ...)
e customers: PCBs, TCBs, ...

Given: arrival rates, service times, queueing disciplines, ...
Obtain: queue sizes, response times, fairness, bottlenecks, ...

Queuing Theory without probabilities

o (Consider cars traveling on a road with a turn
e each car takes 3 seconds to go through the turn
e at most one car can be in the turn at any time

o N(1): # cars in the turn and waiting to enter the turn

arrival rate 1/4
load 3/4
uniform

© 1 2 3 4 5 6 7 8 910 11 12 13 14 15 !

arrival rate 1/4
load 3/4
uniform

© 1 2 3 4 5 6 7 8 910 11 12 13 14 15 !

e Load < 1: stable w/ waits depending on burstiness
e Load > 1: unstable, ever-increasing waits




Queuing Theory without probabilities

e Assume unending stream of customers:
o arrival rate A or X: # arrivals per second
e average service time S. work needed per customer
e average response time R. departure time D - arrival time A
e average waittime W: response time - service time
e throughput X: # departures per sec averaged over all time
e average customers in system N. waiting or busy
e utilization U: fraction of time server is busy
* Typical goal
e @iven: arrival rate, avg service time, queueing discipline
e QObtain: average response time, average queue size
o Little's Law (for any steady-state system):
e N=AXR

Queuing Theory without probabilities

e Avg queue size Nincreases exponentially with load p
e pecomingewasp— 1
e Nincreases as burstiness increases




FCFS non-preemptive
)

customer Ai Si Di R W
1 1.0 3.0 40 30 00
2 20 2.0 6.0 40 20
3 25 10 7.0 45 35

O 1 2 3 4 5 6 7
repeats every 10 seconds
Cc1 C2
arr arr

e System becomes empty at time 7 —> stable
. Average response time: g=20+40+40 1154

ecC
3 3
o 00+20+35 55
. Average wait time: W= % = - sec
. 3
. Arrival rate = throughput: h=s arrivals / sec
. 6
. Utilization: U=E

3 115 115
. Average number customers: N=ixR=-—x—-=

10 3 10

SJF non-preemptive

arr

customer Ai S; Di R W
1 1.0 3.0 40 30 00
2 20 20 70 50 30
3 25 10 50 25 15

O 1 2 3 4 5 6 7
repeats every 10 seconds
Cc1 C2
arr arr

e System becomes empty at time 7 —> stable
: 30450425 105
. Average response time: R= = sec

3 3
o 00+30+15 45
. Average wait time: W= % = —-8€c
. 3 .
. Arrival rate = throughput: h=s arrivals/sec
. 6
. Utilization: U=E

3105 105
. Average number customers: N=ixR=-—x—=

10 3 10




SJS preemptive

customer Ai Si Di R W
1 1.0 30 50 40 1.0
2 20 20 70 50 3.0
3 25 1.0 35 10 0.0

© 1 2 3 4 5 6 7

repeats every 10 seconds
Cc1 C2
arr arr

e System becomes empty at time 7 —> stable

, 40+50+10 100
. Average response time: R= = sec

3 3
L 1.0+3.0+00 4.0
. Average wait time: W= +3—+ =—-sec
, 3
o Arrival rate = throughput: h=15 arrivals / sec
AT 6
. Utilization: U=—
10
3100 10
. Average number customers: N=ixR=--x—==—

RR preemptive ca

arr

customer Ai S; Di R W
1 1.0 30 70 6.0 3.0
2 20 2.0 6.0 40 20
3 25 10 50 25 15

O 1 2 3 4 5 6 7
repeats every 10 seconds
Cc1 C2
arr arr

e System becomes empty at time 7 —> stable
R 60+40+25 125

. Average response time:

3 3
o 30+20+15 65
. Average wait time: W= % =~ sec
. 3
. Arrival rate = throughput: h=s arrivals / sec
. 6
. Utilization: U=E

3125 125
. Average number customers: N=ixR=-—x—==

10 3 10




Scheduling Summary

e response time vs average num customers:

FCFS SJF SJFP RR :
R L5 105 100 125 Little’s Law:

3 3 3 3 N:ﬂ,XR

11.5 105 10.0 125
N 10 10 10 10

e ratio of /N constant, because throughput (X) is same

M/M/1 queues

o« M/M/1 assumption

. (M)emoryless (independent) interarrival times exp dist w/ mean %

o (M)emoryless (independent) service times exp dist w/ mean S
e (1) server

. For stable M/M/1 queue: N=1’%p
N

30

25

20

15

10

5

0.2 0.4 0.6 0.8 °ffered load




Deadlocks

» Necessary conditions for deadlock

e Mutual exclusion - Threads claim exclusive control of
resources

e Hold and wait - Threads hold resources while waiting for
additional resources

e No preemption - Resources cannot be removed from threads
that hold them

o Circular wait - There exists a chain of threads such that each
holds one or more resources that are requested by the next
thread in the chain o

e \What to do? D B B
e prevent l
e avoid .
e deal with when they occur . l .

e pretend they never happen . (. --!
11 ]

Resource Allocation Graph

A set of vertices V and a set of edges E:

* V is partitioned into two types:
- P={(P, P, ..., P} the set of all the processes in the system

- R={R, R, ..., R} the set of all resource types in the system

- request edge: directed edge P.—= R,

- assignment edge: directed edge R, — P,




Resource Allocation Graph (cont.)

e Process Q

oo

e Resource type with 4 instances g

. __.|oo
» Pirequests instance of R; 00

 Piis holding an instance of R _

Resource Allocation Graph example

R, R,
R\ ?\
é
\\g B(/ -
R ';j

* Psrequesting instance of Ry

» Porequesting instance of R»

e one Ryheld by Py

e one Roheld by Ps

» distinct Rs3instances held by Psand P»




Resource Allocation Graph deadlock

N/
Py () (P
\ /

Y d -
R, Rl
o Po—> Ro— P3;—> Rz — P> deadlock
e R3>Pi—> Ri— P> not deadlock, but blocked

by deadlock

Handling Deadlocks what to do

e \What to do?
e prevent
e avoid
e deal with when they occur
e pretend they never happen




Deadlock Prevention

e Try to prevent one of the four conditions from holding true

e Difficult to eliminate mutual exclusion

e Prevent threads from requesting new resources when
holding other resources (eliminates hold and wait)

e Require threads not immediately able to get all needed
resources to give up those they have (eliminates no
preemption)

» Require agreed-upon resource acquisition ordering
(eliminates circular waiting).

Deadlock Prevention circular wait

e Agree on lexicographic ordering on lock acquisitions:

T1: pthread_mutex_lock(ml); (1) |T2: pthread_mutex_lock(m2); (2)
pthread _mutex_lock(m2); pthread mutex_ lock(ml);
e Or address-based:
if (ml > m2) { // grab in high-to-low address order

pthread mutex lock(ml);
pthread mutex_ lock(m2);
} else {
pthread mutex lock(m2);
pthread mutex lock(ml);




Deadlock Prevention circular wait

Agree on lexicographic ordering on lock acquisitions:

T1: pthread_mutex_lock(ml); (1) |T2: pthread_mutex_lock(m2); (2)
pthread _mutex_lock(m2); pthread mutex_ lock(ml);
e Or address-based:
if (ml > m2) { // grab in high-to-low address order
pthread mutex lock(ml);
pthread_mutex_lock(m2);
} else {
pthread mutex lock(m2);
pthread_mutex_lock(ml);
}
Deadlock Prevention circular wait
e Agree on lexicographic ordering on lock acquisitions:
T1: pthread_mutex_lock(ml); (1) |T2: pthread_mutex_lock(m2); (2)

pthread _mutex_lock(m2); pthread mutex_ lock(ml);

or address-based:

if (ml > m2) { // grab in high-to-low address order
pthread mutex lock(ml);
pthread mutex_ lock(m2);
} else {
pthread mutex lock(m2);
pthread mutex lock(ml);




Deadlock Prevention hold and wait

e Acquire all locks at once:

pthread mutex lock(prevention); // begin acquisition
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

pthread mutex unlock(prevention); // end

e But:
e prevention lock is global
e need complete information

Deadlock Prevention no preemption

e Jrylocks
» atomically grab lock if available, or return w/ error

top:
pthread mutex lock(L1); // begin acquisition
if (pthread_mutex_ trylock(L2) != 0) {
pthread mutex unlock(L1);
goto top;

¢ Works even if other thread choose different order. However: livelock:

e Possible, though unlikely, that the threads both repeatedly back off.
We could fix this with random delays.

o Otherissue is encapsulation: some of the locks might be acquired in
called functions, making jump back to initial state more difficult




Deadlock Prevention mutual exclusion

» Lock-free and wait-free data structures and algorithms
e use atomic instructions such as CompareAndSwap

// pseudocode of atomic assembly instruction

int CompareAndSwap(int *address, int expected, int new) {
if (*address == expected) {
*address = new;
return 1; // success
}
return 0; // failure
}

» Use with the following:

void AtomicIncrement(int *value, int amount) {
do {
int old = *value;
} while (CompareAndSwap(value, old, old + amount) == 0);

Deadlock Prevention more wait-free

// mutex-based

void insert(int value) {
node_t *n = malloc(sizeof(node_t));
n->value = value;

pthread mutex lock(listlock); // begin critical section
n->next = head;
head =n;
pthread mutex unlock(listlock); // end critical section
}
// fixed
void insert(int value) {
node_t *n = malloc(sizeof(node_t)); assert(n != NULL);
n->value = value;
do{

n->next = head;
} while (CompareAndSwap(&head, n->next, n) == 0);




Deadlock Avolidance safe states

When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state.

» System is in safe state if there exists:
- sequence <P, P, ..., P > of ALL the processes in the systems such
that for each P, the resources that P, can still request can be satisfied
by currently available resources + resources held by all Pstj<i

* That is:
« If P/s resource needs are not immediately available, then P, can wait
until all P/ have finished
- When P is finished, P, can obtain needed resources, execute, return
allocated resources, and terminate
« When P, terminates, P, ,, can obtain its needed resources, ...

i+1

Deadlock Avolidance safe states

e |n other words:
o System is in safe state — no deadlocks

o System is in unsafe state — possibility of deadlocks

e Avoidance of unsafe states ensure no deadlocks.

unsafe

deadlock

/g




Deadlock Avolidance safe states

e Single instance of a resource type
o Use a resource-allocation graph

o Multiple instances of resource types
e Use the banker’s algorithm

Deadlock Avolidance safe states

« New claim edge P; — R; indicates P; may request
resource R;. (represented by dashed line)

o (Claim edge converts to request edge when a process
requests a resource

e Request edge converted to an assignment edge when the
resource is allocated to the process

 When a resource is released by a process, assignment
edge reconverts to a claim edge

e Resources must be claimed a priori in the system.




Deadlock Avolidance safe states

R, R

safe unsafe

A request by P; for resource Rjcan be granted only if converting the
request edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

Deadlock Mitigation dealing with it

o Maintain wait-for graph
 Nodes are processes
. P — Pj if P; is waiting for resource held by Pj

» Periodically invoke an algorithm that searches for a cycle
in the graph. If there is a cycle, there exists a deadlock

e An algorithm to detect a cycle in a graph requires an
order of n? operations, where n is the number of vertices
in the graph




Deadlock Mitigation dealing with it

(P
R, i @

(@) (b)

Resource-Allocation Graph ~ Corresponding wait-for graph

o Construct the waits for graph
» Check for cycles
» Pick any thread of the cycle and Kill it

Deadlock Mitigation ignoring it

“Not everything worth doing is worth doing well” - Tom West

e Consequence may be
e minor
o veryrare




