
Operating Systems 412
Pete Keleher

CP
ready

•
•

•
•

•
•

IO

Queuing Theory without probabilities

● Queueing system
● servers + waiting rooms
● customers arrive, wait, get served, depart or go to next server
● queueing disciplines

● non-preemptive: fifo, priority, …
● preemptive: round-robin, multi-level feedback, ...

● Operating systems are examples of queueing systems
● servers: hw/sw resources (cpu, disk, req handler, …)
● customers: PCBs, TCBs, ...

● Given: arrival rates, service times, queueing disciplines, ...
● Obtain: queue sizes, response times, fairness, bottlenecks, ...

Queuing Theory without probabilities

● Consider cars traveling on a road with a turn
● each car takes 3 seconds to go through the turn
● at most one car can be in the turn at any time

● N(t): # cars in the turn and waiting to enter the turn

● Load < 1: stable w/ waits depending on burstiness
● Load > 1: unstable, ever-increasing waits

arrival rate 1/4
load 3/4
uniform t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arrival rate 1/4
load 3/4
uniform

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Queuing Theory without probabilities

● Assume unending stream of customers:
● arrival rate or X: # arrivals per second
● average service time S: work needed per customer
● average response time R: departure time D - arrival time A
● average wait time W: response time - service time
● throughput X: # departures per sec averaged over all time
● average customers in system N: waiting or busy
● utilization U: fraction of time server is busy

● Typical goal
● Given: arrival rate, avg service time, queueing discipline
● Obtain: average response time, average queue size

● Little’s Law (for any steady-state system):
●

λ

N = λ × R

Queuing Theory without probabilities

● Avg queue size N increases exponentially with load ρ
● becoming ∞ as ρ → 1

● N increases as burstiness increases

N

ρ1.0

incre
asin

g

0

burst
iness

Queuing Theory without probabilities

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 3.0 + 4.0 + 4.0
3 = 11.5

3

W = 0.0 + 2.0 + 3.5
3 = 5.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 11.5

3 = 11.5
10

FCFS non-preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
4.0
6.0
7.0

Ri
3.0
4.0
4.5

Wi

0.0
2.0
3.5

C1
arr

C2
arr

C3
arr

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals/sec

● Utilization:

● Average number customers:

R = 3.0 + 5.0 + 2.5
3 = 10.5

3

W = 0.0 + 3.0 + 1.5
3 = 4.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.5

3 = 10.5
10

SJF non-preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

C1
arr

C2
arr

Di
4.0
7.0
5.0

Ri
3.0
5.0
2.5

Wi

0.0
3.0
1.5

C3
arr

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 4.0 + 5.0 + 1.0
3 = 10.0

3

W = 1.0 + 3.0 + 0.0
3 = 4.0

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.0

3 = 10
10

SJS preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
5.0
7.0
3.5

Ri
4.0
5.0
1.0

Wi

1.0
3.0
0.0

C1
arr

C2
arr

C3
arr

● System becomes empty at time 7 —> stable
● Average response time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 6.0 + 4.0 + 2.5
3 = 12.5

3

W = 3.0 + 2.0 + 1.5
3 = 6.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 12.5

3 = 12.5
10

RR preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
7.0
6.0
5.0

Ri
6.0
4.0
2.5

Wi

3.0
2.0
1.5

C1
arr

C2
arr

C3
arr

● response time vs average num customers:

● ratio of R / N constant, because throughput (X) is same

Scheduling Summary

Little’s Law:
N = λ × R

● M/M/1 assumption

● (M)emoryless (independent) interarrival times exp dist w/ mean

● (M)emoryless (independent) service times exp dist w/ mean S
● (1) server

● For stable M/M/1 queue:

1
λ

N = ρ
1 − ρ

M/M/1 queues

● Necessary conditions for deadlock
● Mutual exclusion - Threads claim exclusive control of

resources
● Hold and wait - Threads hold resources while waiting for

additional resources
● No preemption - Resources cannot be removed from threads

that hold them
● Circular wait - There exists a chain of threads such that each

holds one or more resources that are requested by the next
thread in the chain

● What to do?
● prevent
● avoid
● deal with when they occur
● pretend they never happen

Deadlocks

Resource Allocation Graph
A set of vertices V and a set of edges E:

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set of all the processes in the system

• R = {R1, R2, …, Rm}, the set of all resource types in the system

• request edge: directed edge Pi → Rj

• assignment edge: directed edge Rj → Pi

● Process

● Resource type with 4 instances

● Pi requests instance of Rj

● Pi is holding an instance of Rj

Resource Allocation Graph (cont.)

Pi

Rj

Pi

Rj

● P1 requesting instance of R1
● P2 requesting instance of R2
● one R1 held by P1
● one R2 held by P3
● distinct R3 instances held by P1 and P2

Resource Allocation Graph example

R3 R4

R1 R2

P1 P2 P3

● P2 R2 P3 R3 P2 deadlock
● R3 P1 R1 P2

→ → → →
→ → →

Resource Allocation Graph deadlock

R3 R4

R1 R2

P1 P2 P3

not deadlock, but blocked
by deadlock

Handling Deadlocks what to do
● What to do?

● prevent
● avoid
● deal with when they occur
● pretend they never happen

Deadlock Prevention
● Try to prevent one of the four conditions from holding true

● Difficult to eliminate mutual exclusion
● Prevent threads from requesting new resources when

holding other resources (eliminates hold and wait)
● Require threads not immediately able to get all needed

resources to give up those they have (eliminates no
preemption)

● Require agreed-upon resource acquisition ordering
(eliminates circular waiting).

Deadlock Prevention circular wait
● Agree on lexicographic ordering on lock acquisitions:

● or address-based:

T1: pthread_mutex_lock(m1);

 pthread_mutex_lock(m2);

T2: pthread_mutex_lock(m2);

pthread_mutex_lock(m1);

1 2

if (m1 > m2) { // grab in high-to-low address order
 pthread_mutex_lock(m1);
 pthread_mutex_lock(m2);
} else {
 pthread_mutex_lock(m2);
 pthread_mutex_lock(m1);
}

Deadlock Prevention circular wait
● Agree on lexicographic ordering on lock acquisitions:

● or address-based:

T1: pthread_mutex_lock(m1);

 pthread_mutex_lock(m2);

T2: pthread_mutex_lock(m2);

pthread_mutex_lock(m1);

1 2

if (m1 > m2) { // grab in high-to-low address order
 pthread_mutex_lock(m1);
 pthread_mutex_lock(m2);
} else {
 pthread_mutex_lock(m2);
 pthread_mutex_lock(m1);
}

Deadlock Prevention circular wait
● Agree on lexicographic ordering on lock acquisitions:

● or address-based:

T1: pthread_mutex_lock(m1);

 pthread_mutex_lock(m2);

T2: pthread_mutex_lock(m2);

pthread_mutex_lock(m1);

1 2

if (m1 > m2) { // grab in high-to-low address order
 pthread_mutex_lock(m1);
 pthread_mutex_lock(m2);
} else {
 pthread_mutex_lock(m2);
 pthread_mutex_lock(m1);
}

Deadlock Prevention hold and wait
● Acquire all locks at once:

● But:
● prevention lock is global
● need complete information

pthread_mutex_lock(prevention); // begin acquisition
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);
...
pthread_mutex_unlock(prevention); // end

Deadlock Prevention no preemption
● Try locks

● atomically grab lock if available, or return w/ error

● Works even if other thread choose different order. However: livelock:
● Possible, though unlikely, that the threads both repeatedly back off.

We could fix this with random delays.

● Other issue is encapsulation: some of the locks might be acquired in
called functions, making jump back to initial state more difficult

top:
 pthread_mutex_lock(L1); // begin acquisition
 if (pthread_mutex_trylock(L2) != 0) {
 pthread_mutex_unlock(L1);
 goto top;
 }

Deadlock Prevention mutual exclusion
● Lock-free and wait-free data structures and algorithms

● use atomic instructions such as CompareAndSwap

● Use with the following:
void AtomicIncrement(int *value, int amount) {
 do {
 int old = *value;
 } while (CompareAndSwap(value, old, old + amount) == 0);
}

int CompareAndSwap(int *address, int expected, int new) {
 if (*address == expected) {
 *address = new;
 return 1; // success
 }
 return 0; // failure
}

// pseudocode of atomic assembly instruction

Deadlock Prevention more wait-free

void insert(int value) {
 node_t *n = malloc(sizeof(node_t));
 n->value = value;
 pthread_mutex_lock(listlock); // begin critical section
 n->next = head;
 head = n;
 pthread_mutex_unlock(listlock); // end critical section
}

// mutex-based

void insert(int value) {
 node_t *n = malloc(sizeof(node_t)); assert(n != NULL);
 n->value = value;
 do{
 n->next = head;
 } while (CompareAndSwap(&head, n->next, n) == 0);
}

// fixed

Deadlock Avoidance safe states
When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state.

• System is in safe state if there exists:

• sequence <P
1
, P

2
, …, P

n
> of ALL the processes in the systems such

that for each P
i
, the resources that P

i
can still request can be satisfied

by currently available resources + resources held by all P
j
 s.t. j < i

• That is:

• If Pi’s resource needs are not immediately available, then Pi can wait

until all Pj have finished

• When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, …

● In other words:
● System is in safe state no deadlocks
● System is in unsafe state possibility of deadlocks

● Avoidance of unsafe states ensure no deadlocks.

⟶
⟶

Deadlock Avoidance safe states

● Single instance of a resource type
● Use a resource-allocation graph

● Multiple instances of resource types
● Use the banker’s algorithm

Deadlock Avoidance safe states

● New claim edge indicates may request
resource . (represented by dashed line)

● Claim edge converts to request edge when a process
requests a resource

● Request edge converted to an assignment edge when the
resource is allocated to the process

● When a resource is released by a process, assignment
edge reconverts to a claim edge

● Resources must be claimed a priori in the system.

Pi → Rj Pi
RJ

Deadlock Avoidance safe states

Deadlock Avoidance safe states

R3

R1

P1 P2

R3

R1

P1 P2

safe unsafe

A request by Pi for resource Rj can be granted only if converting the
request edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

● Maintain wait-for graph
● Nodes are processes
● if is waiting for resource held by

● Periodically invoke an algorithm that searches for a cycle
in the graph. If there is a cycle, there exists a deadlock

● An algorithm to detect a cycle in a graph requires an
order of operations, where is the number of vertices
in the graph

Pi → Pj Pi Pj

n2 n

Deadlock Mitigation dealing with it

Deadlock Mitigation dealing with it

● Construct the waits for graph
● Check for cycles
● Pick any thread of the cycle and kill it

Deadlock Mitigation ignoring it
“Not everything worth doing is worth doing well” - Tom West

● Consequence may be
● minor
● very rare

