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● Queueing system 
● servers + waiting rooms  
● customers arrive, wait, get served, depart or go to next server  
● queueing disciplines  

● non-preemptive: fifo, priority, … 
● preemptive: round-robin, multi-level feedback, ...  

● Operating systems are examples of queueing systems  
● servers: hw/sw resources (cpu, disk, req handler, …) 
● customers: PCBs, TCBs, ...  

● Given: arrival rates, service times, queueing disciplines, ...  
● Obtain: queue sizes, response times, fairness, bottlenecks, ... 

Queuing Theory without probabilities

● Consider cars traveling on a road with a turn 
● each car takes 3 seconds to go through the turn 
● at most one car can be in the turn at any time  

● N(t): # cars in the turn and waiting to enter the turn  

● Load < 1: stable w/ waits depending on burstiness 
● Load > 1: unstable, ever-increasing waits

arrival rate 1/4 
load 3/4 
uniform t 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
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Queuing Theory without probabilities



● Assume unending stream of customers: 
● arrival rate  or X:  # arrivals per second 
● average service time S:  work needed per customer 
● average response time R:  departure time D - arrival time A 
● average wait time W:  response time - service time 
● throughput X: # departures per sec averaged over all time 
● average customers in system N:  waiting or busy 
● utilization U:  fraction of time server is busy 

● Typical goal 
● Given: arrival rate, avg service time, queueing discipline 
● Obtain: average response time, average queue size 

● Little’s Law (for any steady-state system):  
●

λ

N = λ × R

Queuing Theory without probabilities

● Avg queue size N increases exponentially with load ρ  
● becoming ∞ as ρ → 1 

● N increases as burstiness increases
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Queuing Theory without probabilities



● System becomes empty at time 7 —> stable 
● Average response time:    sec 

● Average wait time:    sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:    

● Average number customers:  
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● System becomes empty at time 7 —> stable 
● Average response time:  sec 

● Average wait time:  sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:  

● Average number customers: 
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● System becomes empty at time 7 —> stable 
● Average response time:   sec 

● Average wait time:  sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:  

● Average number customers: 
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● response time vs average num customers: 

● ratio of R / N constant, because throughput (X) is same

Scheduling Summary

Little’s Law: 
N = λ × R

● M/M/1 assumption 

● (M)emoryless (independent) interarrival times exp dist w/ mean  

● (M)emoryless (independent) service times exp dist w/ mean S 
● (1) server 

● For stable M/M/1 queue:   

1
λ

N = ρ
1 − ρ

M/M/1 queues



● Necessary conditions for deadlock 
● Mutual exclusion - Threads claim exclusive control of 

resources 
● Hold and wait - Threads hold resources while waiting for 

additional resources 
● No preemption - Resources cannot be removed from threads 

that hold them 
● Circular wait - There exists a chain of threads such that each 

holds one or more resources that are requested by the next 
thread in the chain 

● What to do? 
● prevent 
● avoid 
● deal with when they occur 
● pretend they never happen

Deadlocks

Resource Allocation Graph
A set of vertices V and a set of edges E: 

• V is partitioned into two types: 
• P = {P1, P2, …, Pn}, the set of all the processes in the system 

• R = {R1, R2, …, Rm}, the set of all resource types in the system 

• request edge: directed edge  Pi → Rj 

• assignment edge: directed edge  Rj → Pi



● Process 

● Resource type with 4 instances 

● Pi requests instance of Rj 

● Pi is holding an instance of Rj

Resource Allocation Graph (cont.)

Pi

Rj

Pi

Rj

● P1 requesting instance of R1 
● P2 requesting instance of R2 
● one R1 held by P1 
● one R2 held by P3 
● distinct R3 instances held by P1 and P2

Resource Allocation Graph example

R3 R4

R1 R2

P1 P2 P3



● P2  R2  P3  R3  P2                   deadlock 
● R3  P1  R1  P2                     

→ → → →
→ → →

Resource Allocation Graph deadlock

R3 R4

R1 R2

P1 P2 P3

not deadlock, but blocked 
by deadlock

Handling Deadlocks what to do
● What to do? 

● prevent 
● avoid 
● deal with when they occur 
● pretend they never happen



Deadlock Prevention
● Try to prevent one of the four conditions from holding true 

● Difficult to eliminate mutual exclusion 
● Prevent threads from requesting new resources when 

holding other resources (eliminates hold and wait) 
● Require threads not immediately able to get all needed 

resources to give up those they have (eliminates no 
preemption) 

● Require agreed-upon resource acquisition ordering 
(eliminates circular waiting).

Deadlock Prevention circular wait
● Agree on lexicographic ordering on lock acquisitions: 

● or address-based:

T1: pthread_mutex_lock(m1); 

 pthread_mutex_lock(m2);

T2: pthread_mutex_lock(m2); 
  

pthread_mutex_lock(m1);

1 2

if (m1 > m2) {        // grab in high-to-low address order 
    pthread_mutex_lock(m1); 
    pthread_mutex_lock(m2); 
} else { 
    pthread_mutex_lock(m2); 
    pthread_mutex_lock(m1); 
}
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Deadlock Prevention hold and wait
● Acquire all locks at once: 

● But: 
● prevention lock is global 
● need complete information

pthread_mutex_lock(prevention);  // begin acquisition 
pthread_mutex_lock(L1); 
pthread_mutex_lock(L2); 
... 
pthread_mutex_unlock(prevention);  // end

Deadlock Prevention no preemption
● Try locks 

● atomically grab lock if available, or return w/ error 

● Works even if other thread choose different order. However: livelock: 
● Possible, though unlikely, that the threads both repeatedly back off. 

We could fix this with random delays. 

● Other issue is encapsulation: some of the locks might be acquired in 
called functions, making jump back to initial state more difficult

top:  
    pthread_mutex_lock(L1);  // begin acquisition 
  if (pthread_mutex_trylock(L2) != 0) { 
      pthread_mutex_unlock(L1); 
      goto top; 
  }



Deadlock Prevention mutual exclusion
● Lock-free and wait-free data structures and algorithms 

● use atomic instructions such as CompareAndSwap 

● Use with the following:
void AtomicIncrement(int *value, int amount) { 
    do { 
        int old = *value; 
    } while (CompareAndSwap(value, old, old + amount) == 0); 
}

int CompareAndSwap(int *address, int expected, int new) { 
    if (*address == expected) { 
        *address = new; 
        return 1;                         // success 
    } 
    return 0;                             // failure 
}

// pseudocode of atomic assembly instruction

Deadlock Prevention more wait-free

void insert(int value) { 
    node_t *n = malloc(sizeof(node_t)); 
    n->value = value; 
    pthread_mutex_lock(listlock);   // begin critical section 
    n->next  = head; 
    head     = n; 
    pthread_mutex_unlock(listlock); // end critical section 
}

// mutex-based

void insert(int value) { 
    node_t *n = malloc(sizeof(node_t)); assert(n != NULL); 
    n->value = value; 
    do{ 
        n->next = head; 
    } while (CompareAndSwap(&head, n->next, n) == 0); 
}

// fixed



Deadlock Avoidance safe states
When a process requests an available resource, system must decide 
if immediate allocation leaves the system in a safe state. 

• System is in safe state if there exists: 

• sequence <P
1
, P

2
, …, P

n
> of ALL the  processes  in the systems such 

that for each P
i
, the resources that P

i 
can still request can be satisfied 

by currently available resources + resources held by all P
j
 s.t. j < i 

• That is: 

• If Pi’s resource needs are not immediately available, then Pi can wait 

until all Pj have finished 

• When Pj is finished, Pi can obtain needed resources, execute, return 

allocated resources, and terminate 

• When Pi terminates, Pi +1 can obtain its needed resources, … 

● In other words: 
● System is in safe state  no deadlocks 
● System is in unsafe state  possibility of deadlocks  

● Avoidance of unsafe states ensure no deadlocks.

⟶
⟶

Deadlock Avoidance safe states



● Single instance of a resource type 
● Use a resource-allocation graph 

● Multiple instances of resource types 
● Use the banker’s algorithm

Deadlock Avoidance safe states

● New claim edge  indicates  may request 
resource . (represented by dashed line) 

● Claim edge converts to request edge when a process 
requests a resource 

● Request edge converted to an assignment edge when the 
resource is allocated to the process 

● When a resource is released by a process, assignment 
edge reconverts to a claim edge 

● Resources must be claimed a priori in the system.

Pi → Rj Pi
RJ

Deadlock Avoidance safe states



Deadlock Avoidance safe states

R3

R1

P1 P2

R3

R1

P1 P2

safe unsafe

A request by Pi for resource Rj can be granted only if converting the 
request edge to an assignment edge does not result in the formation 
of a cycle in the resource allocation graph

● Maintain wait-for graph 
● Nodes are processes 
●  if  is waiting for resource held by  

● Periodically invoke an algorithm that searches for a cycle 
in the graph. If there is a cycle, there exists a deadlock 

● An algorithm to detect a cycle in a graph requires an 
order of  operations, where  is the number of vertices 
in the graph

Pi → Pj Pi Pj

n2 n

Deadlock Mitigation dealing with it



Deadlock Mitigation dealing with it

● Construct the waits for graph 
● Check for cycles 
● Pick any thread of the cycle and kill it

Deadlock Mitigation ignoring it
“Not everything worth doing is worth doing well” - Tom West 

● Consequence may be 
● minor 
● very rare


