
Operating Systems 412
Pete Keleher

(slides mostly from Youjip Won)

1

Memory
● 14 - Memory API
● 17 - Free Space Management
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

2

Memory API: malloc()

● Allocate a memory region on the heap.
● Argument

● size_t size : size of the memory block(in bytes)
● size_t is an unsigned integer type.

● Return
● Success : a void type pointer to the memory block allocated by malloc
● Fail : a null pointer

#include <stdlib.h>

void* malloc(size_t size)

3

sizeof()
● Routines and macros are utilized for size in malloc

instead typing in a number directly.
● Careful of sizeof!

int *x = malloc(10 * sizeof(int));
printf(“%d\n”, sizeof(x));

4

int x[10];
printf(“%d\n”, sizeof(x));

40

4

Memory API: free()

● Free memory region allocated by a call to malloc.
● Argument

● void *ptr : a pointer to a memory block allocated with malloc
● Return

● none

#include <stdlib.h>

void free(void* ptr)

5

Memory Allocating

int *pi; // local variable

(free)
stack

heap

*pi

2KB

pi = (int *)malloc(sizeof(int)* 4);

(free)

2KB

allocated
allocated
allocated
allocated

*pi

Address Space

Address Space

pointer

16KB

2KB

16KB

2KB + 4
2KB + 8

2KB + 12

6

Freeing Memory

free(pi);

(free)

2KB(invalid)

freed
freed
freed
freed

*pi

(free)

2KB(invalid)

stack

heap

*pi

Address Space

Address Space

2KB

16KB

2KB + 4
2KB + 8

2KB + 12

16KB

2KB

7

Forgetting To Allocate Memory
● Incorrect code
char *src = “hello”; //character string constant
char *dst; //unallocated
strcpy(dst, src); //segfault and die

(free)

*dst

stack

heap

*src

hello\0

strcpy(dst, src);
unallocated

Address Space

8

Forgetting To Allocate Memory(Cont.)
● Correct code
char *src = “hello”; //character string constant
char *dst (char *)malloc(strlen(src) + 1); // allocated
strcpy(dst, src); //work properly

(free)

*dst

stack

heap

*src

hello\0

strcpy(dst, src);

allocated

(free)

*dst

stack

heap

*src

hello\0

hello\0

Address Space Address Space

9

Not Allocating Enough Memory
● Incorrect code, but sometimes works
char *src = “hello”; //character string constant
char *dst (char *)malloc(strlen(src)); // too small
strcpy(dst, src); //work properly

(free)

*dst

stack

heap

*src

hello\0

Address Space

h
e
l
l
o\0

6 bytes strlen

5 bytes ‘\0’ is omitted

strcpy(dst, src);

10

Forgetting to Initialize
● Encounter an uninitialized read
int *x = (int *)malloc(sizeof(int)); // allocated

printf(“*x = %d\n”, *x); // uninitialized memory access

(free)
stack

heap

*x

allocated
with value used
before

Address Space

(free)
stack

heap

*x

value used
before
(free)

Address Space

11

Address SpaceAddress Space

Memory Leak
● A program runs out of memory and eventually dies.

(free)

stack

heap

*a

allocated

(free)
stack

heap

*a

unused

allocated

*b

(free)

heap

*a

unused

*b

unused

*c
*d

unused

allocated

Address Space

unused : unused, but not freed

out of memory

12

 Use after memory freed: invalid pointer
Dangling Pointer

*a

*b

(free)

2KB

3KB

3KB

NULL

freed

*a

*b free()

dangling pointer

free(b)

*b
*a

(free)

2KB

3KB2KB

3KB

NULL

4KB

*b
*a

unreachable

Address Space Address Space

Heap

Stack

Heap

Stack

3KB

4KB

2KB

3KB

4KB

13

Other Memory APIs: calloc()

● Allocate memory on the heap and zeroes it before
returning.
● Argument

● size_t num : number of blocks to allocate
● size_t size : size of each block(in bytes)

● Return
● Success : a void type pointer to the memory block allocated by calloc
● Fail : a null pointer

#include <stdlib.h>

void *calloc(size_t num, size_t size)

14

Double Free
● Free memory that was freed already.
int *x = (int *)malloc(sizeof(int)); // allocated
free(x); // free memory
free(x); // free repeatedly

(free)

2KB(invalid)

freed

*x
Address Space

(free)

2KB

2KB allocated

*x

free(x) free(x)

Undefined
Error

Address Space

Heap

Stack

Heap

Stack

16KB

2KB

16KB

15

Other Memory APIs: realloc()

● Change the size of memory block.
● A pointer returned by realloc may be either the same as ptr or a new.
● Argument

● void *ptr: Pointer to memory block allocated with malloc, calloc or
realloc

● size_t size: New size for the memory block(in bytes)
● Return

● Success: Void type pointer to the memory block
● Fail : Null pointer

#include <stdlib.h>

void *realloc(void *ptr, size_t size)

16

System Calls

● malloc library uses the brk system call
● brk is called to expand the program’s break.

● break: The location of the end of the heap in address space
● sbrk is an additional call similar with brk.
● Programmers should never directly call either brk or sbrk.

#include <unistd.h>

int brk(void *addr)
void *sbrk(intptr_t increment);

17

System Calls(Cont.)

● mmap system call can create an anonymous memory region.

#include <sys/mman.h>

void *mmap(void *ptr, size_t length, int port, int flags, int
fd, off_t offset)

18

Memory
● 14 - Memory API
● 17 - Free Space Management
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

19

Splitting
● Finding a free chunk of memory that can satisfy the request

and splitting it into two.
● When request for memory allocation is smaller than the size of free chunks.

free used free
0 10 20 30

head NULLaddr:0
len:10

addr:20
len:10

30-byte heap:

free list:

20

Splitting(Cont.)
● Two 10-byte free segments with a 1-byte request

free used free
0 10 20 30

head NULLaddr:0
len:10

addr:20
len:10

30-byte heap:

free list:

free used free
0 10 20 21 30

head NULLaddr:0
len:10

addr:21
len:9

30-byte heap:

free list:

𝒔𝒑𝒍𝒊𝒕𝒕𝒊𝒏𝒈 𝟏𝟎 − 𝒃𝒚𝒕𝒆 𝒇𝒓𝒆𝒆 𝒔𝒆𝒈𝒎𝒆𝒏𝒕

21

Coalescing
● If no large enough chunk exists, need to coalesce:

head NULLaddr:0
Len:10

addr:20
len:10

addr:10
len:10

head NULLaddr:0
len:30

𝒄𝒐𝒂𝒍𝒆𝒔𝒄𝒊𝒏𝒈 𝒇𝒓𝒆𝒆 𝒄𝒉𝒖𝒏𝒌𝒔

22

Tracking The Size of Allocated Regions
● free(void *ptr) does not take a size parameter.

● How does the library know the size at dealloc time?
● Most allocators store extra information in a header block

● size
● additional pointers to speed up deallocation
● magic number for integrity checking

ptr

The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

ptr = malloc(20);

23

size: 20

magic: 1234567

Embedding A Free List
● The memory-allocation library initializes the heap and puts

the first element of the free list in the free space.
● Description of a node of the list

● Building the heap and free list
● Assume that the heap is built via mmap() system call.

24

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap(NULL, 4096, PROT_READ|PROT_WRITE,
 MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = 4096 - sizeof(node_t);
head->next = NULL;

typedef struct __node_t {
 int size;
 struct __node_t *next;
} nodet_t;

A Heap With One Free Chunk

head

the rest of the 4KB chunk

size: 4088

next: 0

[virtual address: 16KB]
header: size field

header: next field(NULL is 0)

■ ■ ■

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap(NULL, 4096, PROT_READ|PROT_WRITE,
 MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = 4096 - sizeof(node_t);
head->next = NULL;

25

Growing The Heap
● Most allocators start with a small-sized heap and then

request more memory from the OS when they run out.
● e.g., sbrk(), brk() in most UNIX systems.

Heap

Address Space

Heap

(not in use)

(not in use)

Physical Memory

Heap

Address Space

break

break

sbrk()

Heap

Heap

(not in use)

(not in use)

26

Managing Free Space: Basic Strategies
● Best Fit:

● Finding free chunks that are big or bigger than the request
● Returning the one of smallest in the chunks in the group of candidates

● Worst Fit:
● Finding the largest free chunks and allocation the amount of the request
● Keeping the remaining chunk on the free list.

27

Examples of Basic Strategies
● Allocation Request Size 15

● Best-fit:

● Worst-fit:

head NULL10 30 20

head NULL10 30 5

head NULL10 15 20

28

Other Approaches: Segregated List
● Segregated List:

● Keeping separate free lists for popular requests.
● New complication:

● How much memory should dedicate to the pool of memory that
serves specialized requests of a given size?

● Slab allocator handles this issue.

● Slab Allocator
● Allocate a number of caches for popular specific sizes at system boot.

● e.g., locks, file-system inodes, etc.
● Request a new slab from general memory allocator (size multiple of page

size * object size) when a given cache is running low.

29

Buddy Allocation
● Binary Buddy Allocation

● The allocator divides free space by two until a block that is big enough
to accommodate the request is found.

● Internal fragmentation dealt with through coalescing:
● When block b is freed, coalesce w/ buddy if also free, etc.

64 KB

32 KB

16 KB

32 KB

16 KB

8 KB 8 KB

64KB free space for 7KB request

30

Memory
● 14 - Memory API
● 17 - Free Space Management
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

31

Memory Virtualization
● What is memory virtualization?

● OS virtualizes its physical memory.
● OS provides a virtual address space for each process.
● Illusion of each process using the entire physical memory .

● Why?
● Ease of use in programming
● Memory efficiency in time and space
● Isolation for processes as well as OS

● Protection from errant accesses of other processes

32

Early Operating Systems
● Load only one process in memory.

● Poor utilization and efficiency

0KB

64KB

max

Operating System
(code, data, etc.)

Current
Program
(code, data, etc.)

Physical Memory

33

Multiprogramming and Time Sharing
● Load multiple processes in memory

● Execute one for a short while.
● Switch processes between them in memory.
● Increase utilization and efficiency.

● But what about protection?
● Errant memory accesses from other processes

0KB

64KB
Operating System
(code, data, etc.)

Process C
(code, data, etc.)

Free

Process B
(code, data, etc.)

Free

Process A
(code, data, etc.)

Physical Memory

Free

Free

128KB

192KB

256KB

320KB

384KB

448KB

512KB

34

Address Space
● An abstraction of physical memory:

0KB

Program Code

(free)

1KB

2KB

15KB

16KB

Heap

Stack
Address
Space

35

● Code
● Where instructions live

● Heap
● Dynamically allocate memory.

● malloc in C
● new in object-oriented languages

● Stack
● Store return addresses or values.
● Contain local variables arguments to routines.

Virtual Addresses
● Every address in a running program is virtual.

● OS uses hardware to translate virtual addresses to physical

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){

 printf("location of code : %p\n", (void *) main);
 printf("location of heap : %p\n", (void *) malloc(1));
 int x = 3;
 printf("location of stack : %p\n", (void *) &x);

 return x;
}

36

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){

 printf("location of code : %p\n", (void *) main);
 printf("location of heap : %p\n", (void *) malloc(1));
 int x = 3;
 printf("location of stack : %p\n", (void *) &x);

 return x;
}

Output in 64-bit Linux machine:

Virtual Addresses

location of code : 0x40057d
location of heap : 0xcf2010
location of stack : 0x7fff9ca45fcc

(free)

Code
(Text)

Stack

stack

heap

Address Space

Data

Heap

0x400000

0xcf2000

0x7fff9ca49000

0x401000

0xd13000

0x7fff9ca28000

37

Memory
● 14 - Memory API
● 17 - Free Space Management
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

38

Need Efficiency, and Control…
● Limited direct execution (LDE)

● Programs run directly (not emulated)
● Memory virtualizing, efficiency, control maintained by hardware

support.
● e.g., registers, TLBs (Translation Look-aside Buffers), page-

tables

● Hardware transforms virtual addresses to physical addresses
● Memory only addressed with physical addresses

● The OS sets up the hardware.
● Hardware raises interrupts when needed.

39

Example: Address Translation

● Load a value from memory
● Increment by three
● Store the value back into memory

● Assembly

● Assume address of ‘x’ in ebx register.
● Load the value at that address into eax register.
● Add 3 to eax register.
● Store the value in eax back into memory.

void func()
 int x;
 ...
 x = x + 3; // this is the line of code we are interested in

40

128 : movl 0x0(%ebx), %eax ; load 0+ebx into eax
132 : addl $0x03, %eax ; add 3 to eax register
135 : movl %eax, 0x0(%ebx) ; store eax back to mem

• Fetch instruction at address 128
• Execute instruction (load from address 15KB)
• Fetch instruction at address 132
• Execute instruction (no memory reference)
• Fetch the instruction at address 135
• Execute instruction (store to address 15 KB)

(free)

 3000
Stack

stack

heap

Heap

14KB

Program Code

16KB

15KB

0KB

1KB

2KB

3KB

4KB

128
132
135

movl 0x0(%ebx),%eax
addl 0x03,%eax
movl %eax,0x0(%ebx)

41

But not all programs can be at location 0

Example: Address Translation

A Single Relocated Process

(free)

Stack

stack

heap

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated
but not in use)

Heap

Stack

Re
lo

ca
te

d
Pr

oc
es

s

Address Space
Physical Memory

42

Base and Bounds Register

(free)

Stack

stack

heap

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated but not in
use)

Heap

Stack

Address Space
Physical Memory

32KB

physical
address
base register

16KB

bounds register

43

Dynamic(Hardware base) Relocation
● OS decides where in physical memory a process is loaded.

● Set the base register:
physical address = virtual address + base

● Virtual addresses must not be greater than bound or negative:
0 <= virtual address < bound

44

45

Relocation and Address Translation

● Fetch instruction at address 128

● Execute this instruction
● Load from address 15KB

(free)

 3000

virtually addressed

stack

heap

Heap

14KB

Program Code

16KB

15KB

0KB

1KB

2KB

3KB

4KB

128
132
135128 : movl 0x0(%ebx), %eax

32896 = 128 + 32𝐾𝐵(𝑏𝑎𝑠𝑒)

47𝐾𝐵 = 15𝐾𝐵 + 32𝐾𝐵(𝑏𝑎𝑠𝑒)

movl 0x0(%ebx),%eax
addl 0x03,%eax
movl %eax,0x0(%ebx)

Two ways to Use the Bounds Register

(free)

Stack

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated
but not in use)

Heap

Stack

Address Space
Physical Memory

48KB16KB

bounds bounds

46

the end of the
address space

the size of the
address space

OS Issues for Memory Virtualizing
● OS intervenes at three critical junctures:

● When a process starts running:
● find space for address space in physical memory

● When a process is terminated:
● reclaims the memory for use

● When context switch occurs:
● Save and store the base-and-bounds pair

47

