
Memory
● 14 - Memory API
● 17 - Free Space Management
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

47

Issues (still Base and Bounds)
● OS intervenes at three critical junctures:

● When a process starts running:
● find space for address space in physical memory

● When a process is terminated:
● reclaims the memory for use

● When context switch occurs:
● Save and store the base-and-bounds pair

48

OS Issues: When a Process Starts Running
● The OS must find a room for a new address space.

● free list : a list of unused ranges of physical memory

0KB

16KB

32KB

48KB

64KB

Code

(allocated but not in use)

Physical Memory

(not in use)

Heap

Stack

Operating System

(not in use)

Free list

16KB

48KB

49

OS Issues: Process Termination
● OS must put memory back on the free list.

Operating System

0KB

16KB

32KB

48KB

64KB
Physical Memory

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Physical Memory

(not in use)

(not in use)

(not in use)Process A

Free list

16KB

48KB

Free list

16KB

32KB

48KB

50

OS Issues: Context Switches
● OS must save and restore base-and-bounds pair.

● In process structure or process control block(PCB)

Operating System

0KB

16KB

32KB

48KB

64KB

Physical Memory

(not in use)

Process A
Currently Running

Process B

48KB
bounds

32KB
base

Context Switch
Operating System

0KB

16KB

32KB

48KB

64KB

Physical Memory

(not in use)

Process A

Process B
Currently Running

64KB

48KB

Process A PCB

…
base : 32KB
bounds : 48KB
…

bounds

base

51

Not Always Efficient
● Need big chunk of “free” space

● physically consecutive memory

● Cannot run when address space does not
fit into physical memory

(free)

14KB

Program Code

16KB

0KB

2KB

4KB

Heap

Stack

6KB

15KB

5KB

3KB

1KB

52

Memory
● 14 - Memory API
● 17 - Free Space Management
● 13 - Address Spaces
● 15 - Address Translation: base and bounds
● 16 - Address Translation: Segmentation
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

53

Segmentation
● Segment is a contiguous portion of the

address space:
● Several types: code, stack, heap, …

● Segments can be placed anywhere in
physical memory.
● Slightly modified base and bounds per

segment

54

0KB

16KB

28KB

34KB

64KB

Code

Physical Memory

(not in use)

(not in use)

Heap

Stack

Operating System

(not in use)
32KB

Segment Base Size
Code	 32K	 2K
Heap	 34K	 2K
Stack	 28K	 2K

Address Translation for Segments

● The offset of below virtual address 100 is 100.
● The code segment starts at virtual address 0 in address space.

Segment Base Size
Code 32K 2K

0KB

2KB Program Code

4KB

16KB

32KB
100 instruction

physical address = offset + base

Heap

Code

(not in use)

(not in use)

34KB

physical address
𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖

55

● The offset of virtual address 4200 is 104.
● The heap segment starts at virtual address 4096 in address space.

Segment Base Size
Heap 34K 2K

32KB

Heap

Code

(not in use)

(not in use)

34KB 104 + 34K = 3490
physical address

6KB Heap

4KB

Address Space

Physical Memory

4200 heap variable

36KB

Offset + base, not virtual address + base

56

Address Translation for Segments

● Explicit approach
● Chop up the address space into segments based on the top few bits of

virtual address.

● Example: virtual address 4200 (01000001101000)

Segment Descriptors

Segment ID Offset

013 112 211 310 49 8 7 6 5
00 01 00 10 00 0 0 1 1

Segment bits
Code 00
Heap 01
Stack 10
 - 11

57

Segment Descriptors
● Bits

● SEG_MASK = 0x3000(11000000000000)
● SEG_SHIFT = 12
● OFFSET_MASK = 0xFFF (00111111111111)

1 // get top 2 bits of 14-bit VA
2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

3 // now get offset
4 Offset = VirtualAddress & OFFSET_MASK
5 if (Offset >= Bounds[Segment])
6 RaiseException(PROTECTION_FAULT)
7 else
8 PhysAddr = Base[Segment] + Offset
9 Register = AccessMemory(PhysAddr)

58

Referring to Stack Segment
● Stack grows backward.
● Extra hardware support needed.

● The hardware checks which way the segment grows.
● 1: positive direction, 0: negative direction

Segment Base	 Size Grows Positive?
 Code	 32K	 2K 1
 Heap	 34K	 2K 1
 Stack	 28K	 2K 0

Stack

(not in use)

(not in use)
28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)

59
address = base + offset - sizeof(stack)

Support for Sharing
● Segments can be shared between address spaces

● Code sharing still used

● Need hardware support in form of protection bits.
● Bits indicate read, write and execute permissions.

Segment Base Size Grows Positive? Protection
 Code 32K 2K 1 Read-Execute
 Heap 34K 2K 1 Read-Write
 Stack 28K 2K 0 Read-Write

Segment Register Values(with Protection)

60

Fine-Grained and Coarse-Grained
● Coarse-Grained is small number of segments

● e.g., code, heap, stack.

● Fine-Grained segmentation allows more flexibility
● Hardware-supported segment tables

61

OS support: Fragmentation
● External Fragmentation:

● Distinct runs of free space in physical memory
● Might be 24KB free, but not in one contiguous segment.
● The OS cannot satisfy the 20KB request.

● Compaction: consolidating existing segments in physical
memory.
● Compaction is costly.

● Stop running process.
● Copy data to somewhere.
● Change segment register value.

62

Memory Compaction

0KB

16KB

32KB

48KB

64KB

Not compacted

Operating System8KB

24KB

40KB

56KB

Allocated

(not in use)

0KB

16KB

32KB

48KB

64KB

Operating System8KB

24KB

40KB

56KB

(not in use)

(not in use)

Allocated

(not in use)

Allocated

Allocated

Compacted

63

GeekOS
● segmented memory addresses

● 16-bit “segment selector”, 32-bit offset
● segment selector has:

● 1 bit: GDT or LDT
● 13 bits: index into GDT or LDT
● 2 bits: protection level of segment

● segment descriptor (from table) has:
● linear base physical address of segment: 32 bits
● limit (size) of segment: 20 bits
● descriptor privilege level (dpl): 2 bits
● type of segment (data, code, system, tss, gate): 4 bits
● present (in-memory): 1 bit
● etc.

64

● GDT
● entries point to kernel segments, optionally user segments
● entry 0 (null selector) is not used to access memory
● gdtr register points to the GDT

● LDT similar, but
● points to segments of a single process
● entry 0 can be used
● any number of LDTs can be in memory
● LDTR register points (via GDT) to currently used LDT

65

GeekOS

Virtual Memory
● 14 - Memory API
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

66

Paging
● Paging splits address space into fixed-size pages.

● vs segmentation: variable size of logical segments

● Physical memory holding a page is the page frame

● Page table per process
● translates virtual address to physical address.

● Flexibility:
● No assumptions on how heap and stack grow or are used

● Simplicity: ease of free-space management
● All pages and page frames are the same size
● Free lists are easy…

67

● 128-byte physical memory with eight 16-byte page frames
● 64-byte address space with 16-byte pages

0

16

32

48

64
64-byte Virtual Address Space

Paging Example

0

16 reserved for OS

page 3 of AS

(unused)

page 0 of AS

(unused)

page 2 of AS

64-Byte Physical Address Space

(unused)

page 1 of AS

32

48

64

80

96

112

128

0

1

2

3

4

5

6

7

68

page frames

Address Translation
● Two components in the virtual address

● VPN: virtual page number
● Offset: offset within the page

● Example: virtual address 21 in 64-byte address space

Va5 Va4 Va3 Va2 Va1 Va0

VPN offset

0 1 0 1 0 1

VPN offset

69

Example: Address Translation
● The virtual address 21 in 64-byte address space

0 1 0 1 0 1

VPN offset

1 1 0 1 0 1

PFN offset

1

Virtual
Address

Physical
Address

Address
Translation

70

Where Are Page Tables Stored?
● Page tables can be large…

● 32-bit address space with 4-KB pages, 20 bits for VPN
● assume entry is 4 bytes:
● page table size is 4MB of space

● Page tables for each process are stored in memory…

220 * 4 = 222 =

71

0

16

page table
3 7 5 2

page 3 of AS

(unused)

page 0 of AS

32

48

64

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

What Is In The Page Table?
● A page table is just a data structure that is used to map

the virtual address to physical address.
● Simplest form: a linear page table, an array

● The OS/hardware accesses a page-table entry by indexing
into the array by virtual page-number

● Common bits:
● Valid Bit: whether the particular translation is valid.
● Protection Bit: read, write, execute
● Present Bit: in physical memory or swapped out
● Dirty Bit: page modified since it brought into memory
● Reference Bit(Accessed Bit): page has been accessed

72

Example: x86 Page Table Entry

● P: present
● R/W: read/write bit
● U/S: supervisor
● A: accessed bit
● D: dirty bit
● PFN: the page frame number
● Others: mostly caching directives

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G PA
T

D A PC
D

PW
T

U/
S

R/
W

P

73

Paging: Too Slow
● To find a location of the desired PTE, the starting location of

the page table is needed.

● For every memory reference, paging requires the OS to
perform one extra memory reference.

74

1 // Extract the VPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
3
4 // Form the address of the page-table entry (PTE)
5 PTEAddr = PTBR + (VPN * sizeof(PTE))
6
7 // Fetch the PTE
8 PTE = AccessMemory(PTEAddr)
9
10 // Check if process can access the page
11 if (PTE.Valid == False)
12 RaiseException(SEGMENTATION_FAULT)
13 else if (CanAccess(PTE.ProtectBits) == False)
14 RaiseException(PROTECTION_FAULT)
15 else
16 // Access is OK: form physical address and fetch
17 offset = VirtualAddress & OFFSET_MASK
18 PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19 Register = AccessMemory(PhysAddr)

Accessing Memory With Paging

75

A Memory Trace
● Example: A Simple Memory Access

● Compile and execute

● Resulting Assembly code

int array[1000];
...
for (i = 0; i < 1000; i++)
 array[i] = 0;

prompt> gcc –o array array.c –Wall –o
prompt>./array

0x1024 movl $0x0,(%edi,%eax,4)
0x1028 incl %eax
0x102c cmpl $0x03e8,%eax
0x1030 jne 0x1024

76

A Virtual(And Physical) Memory Trace
Page
Table[39]

Page Table[1]

1024

1074

1124

1174

1224

Pa
ge

 Ta
bl

e
(P

A)
Co

de
 (P

A)

4096

4146

4196

1024

1074

1124

Co
de

 (V
A)

0 10 20 30 40 50

Ar
ra

y
(P

A)

7232

7282

7132

Ar
ra

y
(V

A)

40000

40050

40100
m
o
v

m
o
v

i
n
c
l

c
m
p
l

j
n
e

Memory Access

77

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

78

● Part of the chip’s memory-management unit(MMU).
● A hardware cache of popular virtual-to-physical address

translation.

MMU

TLB

CPU

Page 0

TLB
popular v to p

Page 1
Page 2

TLB Hit

Address Translation with MMU

Physical Memory

Page n
…

Logical
Address

TLB
Lookup

Page Table
all v to p entries

TLB Miss

Physical
Address

79

TLB Basic Algorithms
● extract the virtual page number (VPN).
● check for hit in the the TLB
● extract page frame number from relevant TLB entry, form

desired physical address, and access memory

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success , TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True){ // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBit) == True){

5: offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: AccessMemory(PhysAddr)

8: } else RaiseException(PROTECTION_ERROR)

80

TLB Basic Algorithms (Cont.)
● (11-12 lines) The hardware accesses the page table to find the translation.
● (16 lines) updates the TLB with the translation.

11: } else { //TLB Miss

12: PTEAddr = PTBR + (VPN * sizeof(PTE))

13: PTE = AccessMemory(PTEAddr)

14: (…)

15: } else {

16: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)

17: RetryInstruction()

18: }

19:}

81

 How a TLB can improve its performance.
Example: Accessing An Array

 OFFSET
 00 04 08 12

VPN = 00

VPN = 01

VPN = 03

VPN = 04

VPN = 05

VPN = 06 a[0] a[1] a[2]

VPN = 07 a[3] a[4] a[5] a[6]

VPN = 08 a[7] a[8] a[9]

VPN = 09

VPN = 10

VPN = 11

VPN = 12

VPN = 13

VPN = 14

0: int sum = 0 ;

1: for(i=0; i<10; i++){

2: sum+=a[i];

3: }

3 TLB misses and 7 hits.
Thus TLB hit rate is 70%.

The TLB improves performance
 due to spatial locality

82

Locality
● Temporal Locality

● An instruction or data item that has been recently accessed will likely be re-
accessed soon in the future.

● Spatial Locality
● If a program accesses memory at address x, it will likely soon access

memory near x.

2nd access might be same addr as first

Virtual Memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page n

1st access is page1.
2nd access is near in page1.

Virtual Memory

…

Page 1

Page 2

Page 3

Page 4

Page 5

Page n…
Page 6

Page 7

83

