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Issues (still Base and Bounds)
● OS intervenes at three critical junctures: 

● When a process starts running: 
● find space for address space in physical memory 

● When a process is terminated:  
● reclaims the memory for use 

● When context switch occurs: 
● Save and store the base-and-bounds pair
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OS Issues: When a Process Starts Running
● The OS must find a room for a new address space. 

● free list : a list of unused ranges of physical memory
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OS Issues: Process Termination
● OS must put memory back on the free list.

Operating System
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OS Issues: Context Switches
● OS must save and restore base-and-bounds pair. 

●  In process structure or process control block(PCB)

Operating System
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16KB
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48KB

64KB

Physical Memory

(not in use)

Process A 
Currently Running

Process B

48KB
bounds
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base

Context Switch
Operating System

0KB

16KB
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Process A

Process B 
Currently Running

64KB
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Process A PCB

…
base :      32KB
bounds : 48KB 
…

bounds

base
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Not Always Efficient
● Need big chunk of “free” space 

● physically consecutive memory 

● Cannot run when address space does not 
fit into physical memory

(free)
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Program Code
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2KB
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Stack

6KB

15KB

5KB
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Segmentation
● Segment is a contiguous portion of the 

address space: 
● Several types: code, stack, heap, … 

● Segments can be placed anywhere in  
physical memory. 
● Slightly modified base and bounds per 

segment
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16KB

28KB

34KB

64KB

Code

Physical Memory
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(not in use)

Heap

Stack

Operating System

(not in use)
32KB

Segment         Base  Size 
Code	   32K	  2K 
Heap	   34K	  2K 
Stack	   28K	  2K



Address Translation for Segments

● The offset of below virtual address 100 is 100. 
● The code segment starts at virtual address 0 in address space.

Segment    Base  Size 
Code   32K  2K

0KB

2KB Program Code

4KB

16KB

32KB
100 instruction

physical address = offset + base

Heap

Code

(not in use)

(not in use)

34KB

 
physical address
𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖
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● The offset of virtual address 4200 is 104. 
● The heap segment starts at virtual address 4096 in address space.

Segment    Base  Size 
Heap   34K  2K

32KB

Heap

Code

(not in use)

(not in use)

34KB 104 + 34K = 3490 
physical address

6KB Heap

4KB

Address Space

Physical Memory

4200 heap variable

36KB

Offset + base, not virtual address + base
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Address Translation for Segments



● Explicit approach 
● Chop up the address space into segments based on the top few bits of 

virtual address. 

● Example: virtual address 4200 (01000001101000)

Segment Descriptors

Segment ID Offset

013 112 211 310 49 8 7 6 5
00 01 00 10 00 0 0 1 1

Segment  bits 
Code   00 
Heap   01 
Stack   10 
 -   11
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Segment Descriptors
● Bits 

● SEG_MASK = 0x3000(11000000000000) 
● SEG_SHIFT = 12 
● OFFSET_MASK = 0xFFF (00111111111111)

1   // get top 2 bits of 14-bit VA 
2   Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT 
  
3   // now get offset  
4   Offset = VirtualAddress & OFFSET_MASK  
5   if (Offset >= Bounds[Segment])  
6    RaiseException(PROTECTION_FAULT)  
7   else  
8    PhysAddr = Base[Segment] + Offset  
9    Register = AccessMemory(PhysAddr) 
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Referring to Stack Segment
● Stack grows backward. 
● Extra hardware support needed. 

● The hardware checks which way the segment grows. 
● 1: positive direction, 0: negative direction 

Segment  Base	 Size  Grows Positive? 
 Code	   32K	  2K        1              
 Heap	   34K	  2K        1  
 Stack	   28K	  2K        0

Stack

(not in use)

(not in use)
28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)
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address = base + offset - sizeof(stack)

Support for Sharing
● Segments can be shared between address spaces 

● Code sharing still used 

● Need hardware support in form of protection bits.  
● Bits indicate read, write and execute permissions. 

Segment  Base Size  Grows Positive?  Protection 
 Code   32K  2K        1           Read-Execute              
 Heap   34K  2K        1           Read-Write  
 Stack   28K  2K        0           Read-Write

Segment Register Values(with Protection)
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Fine-Grained and Coarse-Grained
● Coarse-Grained is small number of segments 

●  e.g., code, heap, stack. 

● Fine-Grained segmentation allows more flexibility 
● Hardware-supported segment tables
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OS support: Fragmentation
● External Fragmentation:  

● Distinct runs of free space in physical memory  
● Might be 24KB free, but not in one contiguous segment. 
● The OS cannot satisfy the 20KB request. 

● Compaction: consolidating existing segments in physical 
memory. 
● Compaction is costly.


● Stop running process. 
● Copy data to somewhere. 
● Change segment register value.
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Memory Compaction
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GeekOS
● segmented memory addresses 

● 16-bit “segment selector”, 32-bit offset 
● segment selector has: 

● 1 bit: GDT or LDT 
● 13 bits: index into GDT or LDT 
● 2 bits: protection level of segment 

● segment descriptor (from table) has: 
● linear base physical address of segment: 32 bits 
● limit (size) of segment: 20 bits 
● descriptor privilege level (dpl): 2 bits 
● type of segment (data, code, system, tss, gate): 4 bits 
● present (in-memory): 1 bit 
● etc.
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● GDT 
● entries point to kernel segments, optionally user segments 
● entry 0 (null selector) is not used to access memory 
● gdtr register points to the GDT 

● LDT similar, but 
● points to segments of a single process 
● entry 0 can be used 
● any number of LDTs can be in memory 
● LDTR register points (via GDT) to currently used LDT
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GeekOS

Virtual Memory
● 14 - Memory API 
● 13 - Address Spaces 
● 15 - Address Translation 
● 16 - Segmentation 
● 17 - Free Space Management 
● 18 - Paging 
● 19 - Translation Lookaside Buffers 
● 20 - Advanced Paging 
● 21 - Swapping 
● 22 - Swapping Policy
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Paging
● Paging splits address space into fixed-size pages. 

● vs segmentation: variable size of logical segments 

● Physical memory holding a page is the page frame 

● Page table per process 
● translates virtual address to physical address. 

● Flexibility: 
● No assumptions on how heap and stack grow or are used 

● Simplicity: ease of free-space management 
● All pages and page frames are the same size 
● Free lists are easy…
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● 128-byte physical memory with eight 16-byte page frames 
● 64-byte address space with 16-byte pages

0

16

32

48

64
64-byte Virtual Address Space

Paging Example

0

16 reserved for OS

page 3 of AS

(unused)

page 0 of AS

(unused)

page 2 of AS

64-Byte Physical Address Space

(unused)

page 1 of AS

32

48

64

80

96

112

128

0 

1 

2 

3 

4 

5 

6 

7
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page frames



Address Translation
● Two components in the virtual address 

● VPN: virtual page number 
● Offset: offset within the page 

● Example: virtual address 21 in 64-byte address space

Va5 Va4 Va3 Va2 Va1 Va0

VPN offset

0 1 0 1 0 1

VPN offset
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Example: Address Translation
● The virtual address 21 in 64-byte address space

0 1 0 1 0 1

VPN offset

1 1 0 1 0 1

PFN offset

1

Virtual 
Address

Physical 
Address

Address 
Translation
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Where Are Page Tables Stored?
● Page tables can be large… 

● 32-bit address space with 4-KB pages, 20 bits for VPN 
● assume entry is 4 bytes: 
● page table size is  4MB of space 

● Page tables for each process are stored in memory…

220 * 4 = 222 =
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0

16

page table 
3 7 5 2

page 3 of AS

(unused)

page 0 of AS

32

48

64

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

What Is In The Page Table?
● A page table is just a data structure that is used to map 

the virtual address to physical address. 
● Simplest form: a linear page table, an array 

● The OS/hardware accesses a page-table entry by indexing 
into the array by virtual page-number 

● Common bits: 
● Valid Bit: whether the particular translation is valid. 
● Protection Bit: read, write, execute 
● Present Bit: in physical memory or swapped out 
● Dirty Bit: page modified since it brought into memory 
● Reference Bit(Accessed Bit): page has been accessed
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Example: x86 Page Table Entry

● P: present 
● R/W: read/write bit 
● U/S: supervisor 
● A: accessed bit 
● D: dirty bit 
● PFN: the page frame number 
● Others: mostly caching directives

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G PA
T

D A PC
D

PW
T

U/
S

R/
W

P
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Paging: Too Slow
● To find a location of the desired PTE, the starting location of 

the page table is needed. 

● For every memory reference, paging requires the OS to 
perform one extra memory reference.
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1  // Extract the VPN from the virtual address  
2  VPN = (VirtualAddress & VPN_MASK) >> SHIFT  
3  
4  // Form the address of the page-table entry (PTE)  
5  PTEAddr = PTBR + (VPN * sizeof(PTE))  
6  
7  // Fetch the PTE  
8  PTE = AccessMemory(PTEAddr)  
9  
10  // Check if process can access the page  
11  if (PTE.Valid == False)  
12   RaiseException(SEGMENTATION_FAULT)  
13  else if (CanAccess(PTE.ProtectBits) == False)  
14   RaiseException(PROTECTION_FAULT)  
15  else  
16   // Access is OK: form physical address and fetch  
17   offset = VirtualAddress & OFFSET_MASK  
18   PhysAddr = (PTE.PFN << PFN_SHIFT) | offset  
19   Register = AccessMemory(PhysAddr)

Accessing Memory With Paging
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A Memory Trace
● Example: A Simple Memory Access 

● Compile and execute 

● Resulting Assembly code

int array[1000];  
...  
for (i = 0; i < 1000; i++)  
 array[i] = 0;

prompt> gcc –o array array.c –Wall –o 
prompt>./array

0x1024 movl $0x0,(%edi,%eax,4) 
0x1028 incl %eax  
0x102c cmpl $0x03e8,%eax  
0x1030 jne 0x1024 
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A Virtual(And Physical) Memory Trace
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Memory Access
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Virtual Memory
● 13 - Address Spaces 
● 14 - Memory API 
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● Part of the chip’s memory-management unit(MMU). 
● A hardware cache of popular virtual-to-physical address 

translation.

MMU

TLB

CPU

Page 0

TLB
popular v to p

Page 1
Page 2

TLB Hit

Address Translation with MMU

Physical Memory

Page n
…

Logical  
Address

TLB 
Lookup

Page Table
all v to p entries

TLB Miss 

Physical 
Address

79

TLB Basic Algorithms
● extract the virtual page number (VPN). 
● check for hit in the the TLB 
● extract page frame number from relevant TLB entry, form 

desired physical address, and access memory

1: VPN = (VirtualAddress & VPN_MASK ) >> SHIFT  

2: (Success , TlbEntry) = TLB_Lookup(VPN) 

3:    if (Success == True){ // TLB Hit 

4:        if (CanAccess(TlbEntry.ProtectBit) == True ){ 

5:            offset = VirtualAddress & OFFSET_MASK  

6:            PhysAddr = (TlbEntry.PFN << SHIFT) | Offset 

7:            AccessMemory( PhysAddr ) 

8:        } else RaiseException(PROTECTION_ERROR)
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TLB Basic Algorithms (Cont.)
● (11-12 lines)  The hardware accesses the page table to find the translation. 
● (16 lines) updates the TLB with the translation.

11:    } else { //TLB Miss 

12:        PTEAddr = PTBR + (VPN * sizeof(PTE)) 

13:        PTE = AccessMemory(PTEAddr)  

14:        (…) 

15:    } else { 

16:        TLB_Insert( VPN , PTE.PFN , PTE.ProtectBits) 

17:        RetryInstruction() 

18:    } 

19:}
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 How a TLB can improve its performance.
Example: Accessing An Array

                 OFFSET
                    00       04         08          12

VPN = 00

VPN = 01

VPN = 03

VPN = 04

VPN = 05

VPN = 06 a[0] a[1] a[2]

VPN = 07 a[3] a[4] a[5] a[6]

VPN = 08 a[7] a[8] a[9]

VPN = 09

VPN = 10

VPN = 11

VPN = 12

VPN = 13

VPN = 14

0: int sum = 0 ;   

1: for( i=0; i<10; i++){ 

2:  sum+=a[i]; 

3: }

3 TLB misses and 7 hits.  
Thus TLB hit rate is 70%. 

The TLB improves performance
 due to spatial locality
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Locality
● Temporal Locality 

● An instruction or data item that has been recently accessed will likely be re-
accessed soon in the future. 

● Spatial Locality
● If a program accesses memory at address x, it will likely soon access 

memory near x.

2nd access might be same addr as first

Virtual Memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page n

1st access is page1. 
2nd access is near in page1.

Virtual Memory

…

Page 1

Page 2

Page 3

Page 4

Page 5

Page n…
Page 6

Page 7
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