
Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

84

Who Handles The TLB Miss?
● Hardware handles the TLB miss entirely on CISC processors.

● The hardware know where the page tables are located
● … “walks” the page table, finding the correct entry and

extracting the desired translation, update and retry instruction.
● this is a hardware-managed TLB.

● RISC processors often manage TLBs in software.
● On a TLB miss, the hardware raises an exception

● Trap handler is code within the OS that is written with the
express purpose of handling TLB misses.

85

TLB Control Flow algorithm (OS Handled)

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)

8: else

9: RaiseException(PROTECTION_FAULT)

10: else // TLB Miss

11: RaiseException(TLB_MISS)

86

● The hardware would do the following:

● But might be slow, why not just use the hardware approach?

TLB entry
● TLB entries are often fully associative (any entry for any

mapping)
● A typical TLB might have 32, 64, or 128 entries.
● Hardware searches the TLB in parallel to find the translation.
● other bits: valid, protection, address-space identifier, dirty bit

VPN PFN other bits

Typical TLB entry

87

TLB Issue: Context Switching

Process A

Process B

TLB Table

Page 0
Page 1
Page 2

Virtual Memory

Page n
…access VPN10

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

VPN PFN valid prot
10 100 1 rwx
- - - -
- - - -
- - - -

Insert TLB Entry

88

TLB Issue: Context Switching

Process A

Process B

TLB Table
VPN PFN valid prot
10 100 1 rwx
- - - -
10 170 1 rwx
- - - -

Context
Switching

access VPN10
Insert TLB Entry

89

Page 0
Page 1
Page 2

Virtual Memory

Page n
…access VPN10

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

TLB Issue: Context Switching

Process A

Process B

TLB Table
VPN PFN valid prot
10 100 1 rwx
- - - -
10 170 1 rwx
- - - -

Can’t Distinguish which entry is
meant for which process

90

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

Could just flush the TLB on every context switch…

Disambiguating Address Spaces
● Provide an address space identifier(ASID) field in the TLB.

Process A

Process B

TLB Table
VPN PFN valid prot ASID
10 100 1 rwx 1
- - - - -
10 170 1 rwx 2
- - - - -

91

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

Another Case
● Two processes share a page.

● Process 1 is sharing physical page 101 with Process2.
● P1 maps this page into the 10th page of its address space.
● P2 maps this page to the 50th page of its address space.

VPN PFN valid prot ASID
10 101 1 rwx 1
- - - - -
50 101 1 rwx 2
- - - - -

Sharing of pages is
useful as it reduces
the number of physical
pages in use.

92

hit hit hit hit hit hit

● LRU (Least Recently Used)
● Evict an entry that has not recently been used.
● Take advantage of locality in the memory-reference stream.

● 6 hits, 11 misses

TLB Replacement Policy

Reference Row

Page Frame:

7 0
7

1
0
7

2
1
0

3
0
2

4
0
3

2
4
0

3
2
4

0
3
2

1
2
3

0
2
1

7 0 1 2 0 3 0 4 2 3 0 23 1 2 0 1

93

0
2
1

0
3
2

3
0
2

2
3
0

2
1
3

1
0
2

A Real TLB Entry

VPN

0 1 2 3 4 5 6 7 8 9 10 11 … 19 … 31
G ASID

PFN C D V

64-bit MIPS R4000 TLB entry

Flag Content

19-bit VPN The rest reserved for the kernel.

24-bit PFN Systems can support with up to 64GB of main memory(pages).

Global bit(G) Used for pages that are globally-shared among processes.

ASID OS can use to distinguish between address spaces.

Coherence bit(C) determine how a page is cached by the hardware.

Dirty bit(D) marking when the page has been written.

Valid bit(V) tells the hardware if there is a valid translation present in the entry.

94

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

95

● Usually one page table for every process in the system.
● Example:

● 32-bit address space, 4KB pages, 4-byte page-table entries

Paging: Linear (Single-Level) Tables

Page table size = 𝟐𝟑𝟐

𝟐𝟏𝟐 ∗ 𝟒𝑩𝒚𝒕𝒆 = 𝟒𝑴𝑩𝐲𝐭𝐞

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry
entry

entry
Page Table

4B 4KB

96

● Larger pages mean fewer entries
● 32-bit address space, 16KB pages, 4-byte entries.

Paging: Smaller Tables

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry
entry

entry

Page Table

4B 16KB

 per page table𝟐𝟑𝟐

𝟐𝟏𝟔 ∗ 𝟒 = 𝟏𝑴𝑩

Big pages lead to internal fragmentation.
97

Problem
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

code

heap

stack

Virtual Address Space

Physical Memory

PFN valid prot present dirty
10 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

98

Problem
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

code

heap

stack

Virtual Address Space

Physical Memory

PFN valid prot present dirty
9 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

99

Most of the page table is unused

Hybrid: Page Table Per Segment
● Each process has three page tables associated with it.

● Base register for each segment is physical address of its page
table.

Seg VPN Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seg value Content

00 unused segment

01 code

10 heap

11 stack

32-bit Virtual address space with 4KB pages

100GeekOS!

TLB miss on Hybrid Approach
● Need physical address of entry from page table.

● Segment bits (SN) determine which base and bounds pair
● Hardware combines physical address therein and the VPN

to form the address of the page table entry (PTE) .

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

02: VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

03: AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

101

Multi-level Page Tables
● Hybrid Approach is not without problems

● Sparsely-used heap still leads to external fragmentation
● Turns the linear page table into something like a tree

● Page the page table
● Allocate page-table pages as needed
● Track valid page table pages with page directory

102

Linear (Left) And Multi-Level (Right) Page Tables

Multi-level Page Tables: Page directory
201PBTR

Linear Page Table Multi-level Page Table

va
lid

pr
ot PFN

1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

1 rw 86

1 rw 15

PF
N2

01
PF

N2
02

PF
N2

03

1 201

0 -

0 -

1 203

The Page Directory

PF
N2

00

va
lid

PFN
1 rx 12

1 rx 13

0 - -

1 rw 100

PF
N2

01

va
lid

pr
ot PFN

[Page 1 of PT:Not Allocated]

[Page 2 of PT: Not Allocated]

0 - -

0 - -

1 rw 86

1 rw 15

PF
N2

04

200PBTR

103

Multi-level Page Tables
● Page directory has:

● one page directory entry (PDE) per page of the page table
● Valid bit and page frame number (PFN)

● Advantages
● Page-table space in proportion to used address space
● OS can lazily allocate new pages as need
● Indirection can disperse page-table pages through memory

● Disadvantages
● Time and space tradeoff
● Complexity

104

A Detailed Multi-Level Example

Flag Detail

Address space 16 KB

Page size 64 byte

Virtual address 14 bit

Num pages pages

VPN 8 bit

Offset 6 bit

Page table entry 4 bytes

code

code

(free)

(free)

heap

heap

 …

 …

stack

stack

A 16-KB Address Space With 64-byte Pages

0000 0000
0000 0001
 ...

1111 1111

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

105

214 /26 = 28 = 256

Detailed Example
● Page directory has one entry per page of the page table

● 256 pages, 4 bytes for PTE, 64 byte pages
● pages

● Accessing invalid page-directory entry raises exception
256 × 4/64 = 16

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index

106

● If PDE is valid:
● Fetch the page table entry (PTE) from the page of the page

table pointed to by this page-directory entry.
● This page-table index can then be used to index into the

page table itself.

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index Page Table Index

107

Detailed Example

The Translation Process: Remember the TLB
18: PTIndex = (VPN & PT_MASK) >> PT_SHIFT

19: PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

20: PTE = AccessMemory(PTEAddr)

21: if(PTE.Valid == False)

22: RaiseException(SEGMENTATION_FAULT)

23: else if(CanAccess(PTE.ProtectBits) == False)

24: RaiseException(PROTECTION_FAULT);

25: else

26: TLB_Insert(VPN, PTE.PFN , PTE.ProtectBits)

27: RetryInstruction()

108

Inverted Page Tables
● Keeping only a single page table that has

● an entry for each physical page of the system

● The entry tells us
● which process is using this page, and
● which virtual page that maps to this physical page

● Finding translating a virtual address now requires a search!
● But can use a hash (PowerPC)

109

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping and Demand Paging
● 22 - Swapping Policy

110

Beyond Physical Memory: Mechanisms
● Require an additional level in the memory hierarchy.

● OS need a place to stash away portions of address space that currently
aren’t in great demand.

● In modern systems, this role is usually served by a hard drive

Mass Storage(hard disk, tape, etc...)

Main Memory

Cache

Registers

Memory Hierarchy in modern system

111

Single large address for a process
● Need to arrange for the code or data to be in memory

before calling a function or accessing data.

● Beyond just a single process.
● The addition of swap space allows the OS to support the

illusion of a large virtual memory for multiple concurrently-
running process

112

Swap Space
● Reserve some space on the disk for swapping pages

Proc 0
[VPN 0]

Proc 1
[VPN 2]

Proc 1
[VPN 3]

Proc 2
[VPN 0]

Physical
Memory

PFN 0 PFN 1 PFN 2 PFN 3

Proc 0
[VPN 1]

Proc 0
[VPN 2] [Free] Proc 1

[VPN 0]
Proc 1
[VPN 1]

Proc 3
[VPN 0]

Proc 2
[VPN 1]

Proc 3
[VPN 1]

Swap
Space

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Physical Memory and Swap Space

113

Present Bit
● Add some machinery higher up in the system in order to

support swapping pages to and from the disk.
● When the hardware looks in the PTE, it may find that the page

is not present in physical memory.

● OS often needs to make room for the new pages
● The process of picking a page to replace is known as page-

replacement or victim-selection policy

Value Meaning

1 page is present in physical memory

0 The page is not in memory but rather on disk.

114

The Page Fault
● Accessing page that is not in physical memory.

● A page with false present bit has either:
● never been in-core (lazily loaded), or
● has been swapped out to disk

115

 PTE used for data such as the PFN of the page for a disk address.
Page Fault Control Flow

i

Operating System

Secondary Storage

Load M

Virtual Address

Page Table
1. Reference

6. reinstruction

2.Trap

3. Check if page exists.

Page Frame

Page Frame

Page Frame

...

Page Frame

4. Get the page

5. Reset Page Table.

When the OS receives a page fault, it looks in the PTE and issues the request to disk.

116

When Replacements Really Occur
● Wait until memory entirely full?

● No, proactively try to keep small portion of memory free.

● Swap or Page Daemon
● Frees/evicts page frames if fewer than a low-water threshold available.
● …until a high-water threshold pages available.

117

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

118

Beyond Physical Memory: Policies
● Memory pressure forces the OS to start paging out pages

to make room for actively-used pages.
● Deciding which page to evict is encapsulated within the

replacement policy of the OS.

119

The Optimal Replacement Policy
● Leads to the fewest number of misses overall

● Replaces the page that will be accessed furthest in the future
● Resulting in the fewest-possible cache misses

● Serve only as a comparison point, to know how close we
are to perfect

120

Tracing the Optimal Policy

Reference Row

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State
0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0,1,2

1 Hit 0,1,2

3 Miss 2 0,1,3

0 Hit 0,1,3

3 Hit 0,1,3

1 Hit 0,1,3

2 Miss 3 0,1,2

1 Hit 0,1,2

Hit rate is 𝐻𝑖𝑡𝑠
𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠

= 𝟓𝟒 . 𝟔%

121

A Simple Policy: FIFO
● Pages were placed in a queue when they enter the system.
● When a replacement occurs, the page on the tail of the

queue(the “First-in” pages) is evicted.
● It is simple to implement, but can’t determine the importance

of blocks.

122

Reference Stream

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State
0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0,1,2

1 Hit 0,1,2

3 Miss 0 1,2,3

0 Miss 1 2,3,0

3 Hit 2,3,0

1 Miss 3,0,1

2 Miss 3 0,1,2

1 Hit 0,1,2

Tracing the FIFIO Policy

Hit rate is 𝐻𝑖𝑡𝑠
𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠

= 𝟑𝟔 . 𝟒%

123

BELADY’S ANOMALY
● We would expect the cache hit rate to increase when the cache gets larger.

But with FIFO, it gets worse:

● FIFO does not have stack policy
● i.e. pages with n frames always subset of pages with n+1 frames

Pa
ge

 F
au

lt
C

ou
nt

0

3

6

9

12

Page Frame Count

1 2 3 4 5 6 7

Reference Stream

1 2 3 4 1 2 5 1 2 3 4
5

124

Using History
● Lean on the past and use history.

● Two type of historical information.

Historical
Information Meaning Algorithms

recency The more recently a page has been accessed, the more likely it will
be accessed again LRU

frequency If a page has been accessed many times, It should not be replcaed
as it clearly has some value LFU

125

Using History : LRU
● Replaces the least-recently-used page.

Reference Stream

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State
0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 1,2,0

1 Hit 2,0,1

3 Miss 2 0,1,3

0 Hit 1,3,0

3 Hit 1,0,3

1 Hit 0,3,1

2 Miss 0 3,1,2

1 Hit 3,2,1 126

The Exam
● GeekOS
● Synchronization

● Deadlock mitigation
● Trylocks, TestAndSet
● Writing code
● Semantics

● Queueing
● Characteristics
● Deriving queue lengths
● changing my terminology: turnaround time, not response

● Paging and memory systems
● segmentation
● paging
● multi-level page tables
● victim-replacement policies: LRU, FIFO, MIN

127

The Exam (all point totals approximate)
● GeekOS: 5 pts
● Synchronization: 45 pts

● Deadlock mitigation
● Trylocks, TestAndSet
● Writing code
● Semantics

● Queueing: 25 pts
● Characteristics
● Deriving queue lengths
● changing my terminology: turnaround time, not response

● Paging and memory systems: 25 pts
● segmentation
● paging
● multi-level page tables
● victim-replacement policies: LRU, FIFO, MIN

128

