Virtual Memory

19 - Translation Lookaside Buffers
20 - Advanced Paging

21 - Swapping

22 - Swapping Policy

84

Who Handles The TLB Miss?

* Hardware handles the TLB miss entirely on CISC processors.

e The hardware know where the page tables are located
e ... “walks” the page table, finding the correct entry and

extracting the desired translation, update and retry instruction.

e this is a hardware-managed TLB.

» RISC processors often manage TLBs in software.
e On a TLB miss, the hardware raises an exception

e Trap handler is code within the OS that is written with the
express purpose of handling TLB misses.

85

TLB Control Flow algorithm (OS Handled)

e The hardware would do the following:

1: VPN = (VirtualAddress & VPN MASK) >> SHIFT

2: (Success, TlbEntry) = TLB Lookup (VPN)

3: if (Success == True) // TLB Hit

4. if (CanAccess (TlbEntry.ProtectBits) == True)
5: Offset = VirtualAddress & OFFSET MASK
6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
7z Register = AccessMemory (PhysAddr)

8: else

9: RaiseException (PROTECTION FAULT)

10: else // TLB Miss

11: RaiseException (TLB MISS)

e But might be slow, why not just use the hardware approach?

86

TLB entry

e TLB entries are often fully associative (any entry for any
mapping)
o A typical TLB might have 32, 64, or 128 entries.
» Hardware searches the TLB in parallel to find the translation.
e other bits: valid, protection, address-space identifier, dirty bit

VPN PFN other bits

Typical TLB entry

87

TLB Issue: Context Switching

access VPN10 Insert TLB Entry
Process A >
TLB Table
VPN PFN valid prot
> 10 100 1 rwx

age 0 - - - -

age 1 - . - -

Process B

age 2

s

=

) £

) o[g
. =

: (1]

3

o

-

<

age n

Virtual Memory

TLB Issue: Context Switching

age 0
age 1

access VPN10 age 2

Process A

agen TLB Table
VPN PFN valid prot
10 100 1 rwx

Context

Switching

10 170 1 rwx

s
=3
U c
5 U
=
) :
3
o
=
<
Y

age 0

age 1 - . - -

Process B access VPN10

Y
Ii

age 2 Insert TLB Entry

age n

s
g
S |[D
=
)
3
)
<

TLB Issue: Context Switching

age 0
age 1

Process A age n TLB Table
VPN PFN valid prot
10 100 1 rwx
age 0 10 170 1 rwx

age 1 - -

age 2

Process B

s
-
| [T OO c || Ul To| O
o ©
Q
: = | @
: g NS
[e]
-
<

agen meant for which process

[Can’t Distinguish which entry is }

Virtual Memory

Could just flush the TLB on every context switch. ..

90

Disambiguating Address Spaces

* Provide an address space identifier(ASID) field in the TLB.

age O
age 1
age 2

age n TLB Table
VPN PFN valid prot ASID

10 100 1 rwx 1
- - - - I-

Process A

age 0 10 170 1 rwx |2

age 1 - - - -

age 2

Process B

s
=
U (BT g'U OO T
. = .
: [] :
3
o
=
<

age n

Virtual Memory

91

Another Case

e Two processes
e Process 1 is sharing physical page 101 with Process2.
e P1 maps this page into the 10t page of its address space.
e P2 maps this page to the 50t page of its address space.

VPN PFN valid prot ASID

10 101 11 wx 11 Sharing of pages is
useful as it reduces

_ _ _ - _ the number of physical

50 101 |1 wx |2 pages in use.

92

TLB Replacement Policy

e | RU (Least Recently Used)

e FEvict an entry that has not recently been used.
e Take advantage of locality in the memory-reference stream.

Reference Row

2 0 3 0 4 2 3 0 3 2 1 2

7 0 1 0o 1
1 12 X x| I N e
. Of1 1200030041293 (1017]3 1 0]
PageFl’ame. s [s [s [s s | s | s | s [s [s [s | | s || e] —
70011 212131040202 })07Q13 |3 |1 2
—C—4J_J—J—J—J—J— J—J— 1 JL—1C—1
h hit

hit hit hit hit it

Io

N
N

|| [B
ol

e 06 hits, 11 misses N

A Real TLB Entry

64-bit MIPS R4000 TLB entry

0123456789 1011 ... 19 .. 31
\I/PNI G AISIDI I
!
PFN C I D|V
1 1 1 1 1
19-bit VPN The rest reserved for the kernel.
24-bit PFN Systems can support with up to 64GB of main memory(pages).
Global bit(G) Used for pages that are globally-shared among processes.
ASID OS can use to distinguish between address spaces.
Coherence bit(C) determine how a page is cached by the hardware.
Dirty bit(D) marking when the page has been written.
Valid bit(V) tells the hardware if there is a valid translation present in the entry.

94

Virtual Memory

20 - Advanced Paging
21 - Swapping
22 - Swapping Policy

95

Paging: Linear (Single-Level) Tables

» Usually one page table for every process in the system.

e Example:

e 32-bit address space, 4KB pages, 4-byte page-table entries

w

entry

entry

entry

entry

Page Table

4KB

32

1

Physical Memory

2
Page table size = o1 x«4Byte = 4MByte

96

Paging: Smaller Tables

e |arger pages mean fewer entries
e 32-bit address space, 16KB pages, 4-byte entries.

4B I entry

entry

entry

entry

Page Table

232

Physical Memory

e * 4 =1MB per page table

[Big pages lead to internal fragmentation. 1

97

Prob

em

Virtual Address Space

code

heap

stack

0

Physical Memory

PFN valid prot present dirty
10 1 r-x 1 0
- 0 - - -
- 0 - - -
- 0 - - -
15 1 w- 1 1
- 0 - - -
3 1 w- 1 1
23 1 rw- 1 1

A Page Table For 16KB Address Space

98

Prob

em

Virtual Address Space

code

heap

stack

0

Physical Memory

Most of the page table is unused

PFN valid prot present dirty
9 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 |1 w- |11
R L PR R L
3 1 w- 1 1

23 1 w- 1 1

A Page Table For 16KB Address Space

99

Hybrid: Page Table Per Segment

Each process has three page tables associated with it.

» Base register for each segment is physical address of its page
table.

313029282726252423222120191817161514131211109 8 765 4 321 O

Seg VPN ! Offset

32-bit Virtual address space with 4KB pages

Seg value Content

00 unused segment
01 code
10 heap
11 stack

GeekOS!

100

TLB miss on Hybrid Approach

e Need physical address of entry from page table.

e Segment bits (SN) determine which base and bounds pair

e Hardware combines physical address therein and the VPN
to form the address of the page table entry (PTE) .

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT
02: VPN = (VirtualAddress & VPN _MASK) >> VPN SHIFT

03: AddressOfPTE = Base[SN] + (VPN * sizeof (PTE))

101

Multi-level Page Tables

e Hybrid Approach is not without problems

e Sparsely-used heap still leads to external fragmentation
e Turns the linear page table into something like a tree

e Page the page table

o Allocate page-table pages as needed

e Track valid page table pages with page directory

102

Multi-level Page Tables: Page directory

Linear Page Table Multi-level Page Table
PBTR |201 — PBTR [200
s = PFN = = ©
> o P S PFN | S 5 PN
T~ |12 _ INEET —> [1{x |12
1 o -
x_ |13 S S o 1 |13 S
pd a I
0 |- [Z pd
o w |0 0 o
1 [w [100 o o
1 {203 — 1 [rw 100
0 |-
N -
0 |- N The Page Directory [Page 1 of PT:Not Allocated]
=z
0]- -
0 |- [Page 2 of PT: Not Allocated]
0 -
3 —> |o
0 - A <t
Z 0 o
1w |86 L g
T T1s 1w |86 o
1w |15

Linear (Left) And Multi-Level (Right) Page Tables

103

Multi-level Page Tables

e Page directory has:
e One page directory entry (PDE) per page of the page table
* Valid bit and page frame number (PFN)

e Advantages
e Page-table space in proportion to used address space
e OS can lazily allocate new pages as need
e [ndirection can disperse page-table pages through memory

e Disadvantages
e Time and space tradeoff
o Complexity

104

A Detailed Multi-Level Example

0000 0000] S04€
0000 0001f code Flag Detail
(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
heap Num pages 214/26 — 28 — 256 pages
VPN 8 bit
Offset 6 bit
stack
1111 1111 stack Page table entry 4 bytes

A 16-KB Address Space With 64-byte Pages

A
\ 4
.Y

VPN Offset

105

Detailed Example

e Page directory has one entry per page of the page table
e 256 pages, 4 bytes for PTE, 64 byte pages
e 256 x4/64 = 16 pages
e Accessing invalid page-directory entry raises exception

Page Direct9ry Index

ra

w

13 |12 (11 |10 |19 |8 |7 (6 |5 |4 |3 |2 |1 |O

A
v
_Y

VPN ' Offset
14-bits Virtual address

106

Detailed Example

e |f PDE is valid:
e Fetch the page table entry (PTE) from the page of the page
table pointed to by this page-directory entry.
e This can then be used to index into the
page table itself,

, Page Directory Index | Page Table Index

>
<€ >t

13 |12 |11 |10 |9 |8 |7 |6 |5 |4 |3 (2 (1 |O

<
1€

Y_

v
Y.

VPN Offset
14-bits Virtual address

107

The Translation Process: Remember the TLB

18: PTIndex = (VPN & PT MASK) >> PT SHIFT

19: PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof (PTE))
20: PTE = AccessMemory (PTEAddr)

21: (PTE.Valid == False)

22: RaiseException (SEGMENTATION FAULT)

23: (CanAccess (PTE.ProtectBits) == False)

24 RaiseException (PROTECTION FAULT) ;

25:

26: TLB Insert (VPN, PTE.PFN , PTE.ProtectBits)
27: RetryInstruction ()

108

Inverted Page Tables

o Keeping only a single page table that has
e an entry for each physical page of the system

e The entry tells us
e which process is using this page, and
e which virtual page that maps to this physical page

e Finding translating a virtual address now requires a search!
e But can use a hash (PowerPC)

109

Virtual Memory

21 - Swapping and Demand Paging
22 - Swapping Policy

110

Beyond Physical Memory: Mechanisms

e Require an additional level in the memory hierarchy.

¢ OS need a place to stash away portions of address space that currently
aren’t in great demand.

* In modern systems, this role is usually served by a hard drive

Registers

/ Cache
/ Main Memory

/ Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

M

Single large address for a process

e Need to arrange for the code or data to be in memory
before calling a function or accessing data.

e Beyond just a single process

e The addition of swap space allows the OS to support the
illusion of a large virtual memory for multiple concurrently-
running process

112

Swap Space

* Reserve some space on the disk for swapping pages

PFEN O PFN 1 PFN 2 PFN 3
PhySicaI Proc O Proc 1 Proc 1 Proc 2
Memory [VPN 0] [VPN 2] [VPN 3] [VPN 0]
Block O Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Swap Proc 0 Proc 0 [Free] Proc 1 Proc 1 Proc 3 Proc 2 Proc 3
Space [VPN 1] [VPN 2] [VPN 0] [VPN 1] [VPN 0] [VPN 1] [VPN 1]

Physical Memory and Swap Space

113

Present Bit

e Add some machinery higher up in the system in order to
support swapping pages to and from the disk.

* When the hardware looks in the PTE, it may find that the page
is not present in physical memory.

Value Meaning

1 page is present in physical memory

0 The page is not in memory but rather on disk.

e OS often needs to make room for the new pages

* The process of picking a page to replace is known as page-
replacement or victim-selection policy

114

The Page Fault

e Accessing page that is
* A page with false present bit has either:
e never been in-core (lazily loaded), or
e has been swapped out to disk

115

Page Fault Control Flow

0 PTE used for data such as the PFN of the page for a disk address.

Operating System

3. Check if page exists.

\ Secondary Storage

1. Reference 2.Trap l___l

Page Table
Load M \

6. reinstruction i

Page Frame

Page Frame

4. Get the page

A

Page Frame

5. Reset Page Table.

Page Frame

Virtual Address

[When the OS receives a page fault, it looks in the PTE and issues the request to disk.]
116

When Replacements Really Occur

o Wait until memory entirely full?
e No, proactively try to keep small portion of memory free.

e Swap or Page Daemon
e Frees/evicts page frames if fewer than available.
e ...until available.

117

Virtual Memory

o 22 - Swapping Policy

118

Beyond Physical Memory: Policies

 Memory pressure forces the OS to start pages
to make room for actively-used pages.

e Deciding which page to evict is encapsulated within the
replacement policy of the OS.

119

The Optimal Replacement Policy

e [eads to the fewest number of misses overall
* Replaces the page that will be accessed furthest in the future
e Resulting in the cache misses

e Serve only as a comparison point, to know how close we
are to

120

Tracing the Optimal Policy

Access Hit/Miss? Evict Resulting Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2
0 Hit 0,1,2
1 Hit 0,1,2
3 Miss 2 0,1,3
0 Hit 0,1,3
3 Hit 0,1,3
1 Hit 0,1,3
2 Miss 3 0,1,2
1 Hit 0,1,2

o1 2 0 130 3 1 2 1 Hit rate is =54.6%

Reference Row
Hits
Hits + Misses

121

A Simple Policy: FIFO

e Pages were placed in a queue when they enter the system.
e \When a replacement occurs, the page on the tail of the
queue(the “First-in” pages) is evicted.
e |tis simple to implement, but can’t determine the importance
of blocks.

122

Tracing the FIFIO Policy
Access Hit/Miss? Evict Resulting Cache State
0 Miss 0
1 Miss 0,1
2 Miss 0,1,2
0 Hit 0,12
1 Hit 0,1,2
3 Miss 0 1,2,3
0 Miss 1 2,3,0
3 Hit 2,3,0
1 Miss 3,0,1
2 Miss 3 0,1,2

Hit 0,1,2

Reference Stream

. . Hits

123

BELADY'S ANOMALY

» We would expect the cache hit rate to when the cache gets larger.
But with FIFO, it gets worse:

Reference Stream

12

Page Fault Count
o

1 2 3 4 5 6 7

Page Frame Count

e FIFO does not have stack policy

* i.e. pages with n frames always subset of pages with n+7 frames
124

Using History

e |ean on the past and use history.

e Two type of historical information.

Historical . .
Information Meaning Algorithms
The more recently a page has been accessed, the more likely it will
recency be accessed again LRU
If a page has been accessed many times, It should not be replcaed
frequency as it clearly has some value LFU

125

Using History : LRU

* Replaces the least-recently-used page.

Reference Stream

o 1t 2 0 1t 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2
0 Hit 1,2,0
1 Hit 2,0,1
3 Miss 2 0,1,3
0 Hit 1,3,0
3 Hit 1,0,3
1 Hit 0,3,1
2 Miss 0 3,1,2

Hit 3,2,1 126

The Exam

o GeekOS
e Synchronization
e Deadlock mitigation
e Trylocks, TestAndSet
e Writing code
e Semantics
* Queueing
e Characteristics
» Deriving queue lengths
e changing my terminology: turnaround time, not response
e Paging and memory systems
e segmentation
* paging
e multi-level page tables

e victim-replacement policies: LRU, FIFO, MIN
127

The Exam (all point totals approximate)

e (GeekOS: 5 pts
e Synchronization: 45 pts
e Deadlock mitigation
e Trylocks, TestAndSet
e Writing code
e Semantics
* Queueing: 25 pts
e Characteristics
» Deriving queue lengths
e changing my terminology: turnaround time, not response
e Paging and memory systems: 25 pts
e segmentation
* paging
e multi-level page tables

e victim-replacement policies: LRU, FIFO, MIN
128

