
Mass Storage

● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories

2

Persistence

Classic I/O Architecture

3

CPU Memory

 Graphics

Prototypical System Architecture

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

● How should I/O devices be integrated into systems?
● What are the general mechanisms?
● How can we make them efficient?

Modern Architecture

A Canonical Device

● status register: read current device state
● command register: send commands to device
● data register: read or write data a word at a time

Devices: Polling for Response

● Simple
● Inefficient

● CPU occupied doing nothing

While (STATUS == BUSY)
 ; // wait until device is not busy
Write data to DATA register
Write command to COMMAND register
 (starts the device and executes the command)
While (STATUS == BUSY)
 ; // wait until device is done with your request

Devices: interrupts

● Send request
● Do something else
● Reschedule process only when interrupt signals finished

Po
lli

ng
In

te
rr

up
ts

● Fast jobs: first poll might have found job finished
● Hybrid: poll for a bit, then block

● Livelock: per-packet interrupts might monopolize CPU
● Coalescing: device delays to combine multiple interrupts

● Writing large blocks to device is a poor use of CPU

● Direct Memory Access (DMA)

Efficiency Issues With Interrupts

Pr
og

 IO
D

M
A

DMA
● Starting

● write address, length of data block to device data registers
● start by writing to control register
● do something else

● Finish
● raise interrupt to signal finish

Communicating w/ devices
● Specific I/O instructions

● instructions in and out on x86
● Memory-mapped I/O

● each register mapped to specific kernel address
● kernel uses ordinary load and store

File Systems Stack
● Want any file system to write to any device

● more than 70% of os code is in device drivers

Example Device: IDE interface
● wait for drive:

● read status register until READY and not
BUSY

● sector count, logical block
address, drive number to
command registers

● start I/O
● issue read/write to command register

● data transfer (writes)
● wait until READY and DRQ (drive request

for data)
● write data to port

● handle interrupts
● per sector transferred, or batch

● error handling
● read status register

Example IDE Driver

● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories

14

Persistence

Magnetic Hard Drives
● platter has set of concentric tracks
● each track divided into sectors
● sectors read by read-write head

Computing the Cost
● Cost is:

+ seek time: move to correct track
+ rotational delay: disk must rotate

until we get to correct sector
+ transfer time: time to read a

sector
● Also, disk has:

● track cache: head always
reading, remembering

● scheduler: more later…

I/O Speeds
● I/O time defined as:

●

● Rate of I/O:

●

● Workload types
● random - need a seek
● sequential - consecutive blocks should not require seek

TI/O = Tseek + Trotation + Ttransfer

RI/O =
Sizetransfer

TI/O

Example
● Examples:

● WD 6TB Red Plus, 5400 RPM, SATA 6Gb/sec, 128 MB cache (2024)

● 5400 RPM, 100 sectors/track, sector 4KB, seek time 2 msec:
● 5400 RPM avg rot latency = 5.50 msec

● = 0.11 msec
● seek time = 3.00 msec
● tota = 8.61 msec
● Implies: = 475 MB/sec

● But…they claim much higher average throughput
● constantly reading/caching everything under head
● locality, locality, locality.
● sequential I/O is a Good Thing

⇒ 1
5400/60 = 11.1msec/rot ⇒

ttransfer = 11.1msec/100

1000/8.61 = 116sectors/sec = 116 × 4096

Optimizations
● track cache:

● read head always reading
● track skew:

● sectors laid out so if cross track boundaries, no extra delay
● When to ack:

● write-back
● ack when data in memory dangerous! but fast!

● write-through
● ack when data on disk safe

Disk Scheduling
● Shortest-seek-time First (SSTF)

● order the request queue by track
● pick requests on the nearest queue

● Downsides
● OS doesn’t know drive geometry
● starvation…

Elevator
● Move across the disk servicing requests in order of tracks

● SCAN: back and forth across tracks
● outer-to-inner, then inner-to-outer
● If request arrives for track on current sweep, it is queued

until next sweep
● F-SCAN

● Freeze queue while doing a sweep
● Avoids starvation of distant requests

● C-SCAN (circular scan)
● Sweep from outer-to-inner, reset, then outer-to-inner, etc.

How to Account for Positioning?
● If seeks much slower than rot. lat.:

● optimize for shorter seeks
● request 16 is next
● SSTF is fine

● If seeks much faster than rot. lat.:
● optimize for smaller rotation lat.
● 8 is next

● SPTF:
● Shortest positioning time first
● OS does not have information

● On-disk scheduler
● efficient SPTF
● I/O merging

Sequential vs Random Example
● sequential (S) vs random (R). Assume:

● Sequential : transfer 10 MB on average as continuous data.

● Random : transfer 10 KB on average.

● Average seek time: 7 ms

● Average rotational delay: 3 ms

● Transfer rate of disk: 50 MB/s

● Results:

● S = = = 47.62 MB /s

● R = = = 0.981 MB /s

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎
𝑇𝑖𝑚𝑒 𝑡𝑜 𝑎𝑐𝑐𝑒𝑠𝑠

10 𝑀𝐵
210 𝑚𝑠

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎
𝑇𝑖𝑚𝑒 𝑡𝑜 𝑎𝑐𝑐𝑒𝑠𝑠

10 𝐾𝐵
10.195 𝑚𝑠

