Mass Storage

Persistence

e 36 - I/O Devices

e 37 - Hard Disk Drives

e 38-RAID

e 39 - File and Directories

Classic I/O Architecture

CPU

Memory

>

Graphics

N

.l

O OO O O

Prototypical System Architecture

Memory Bus
(proprietary)

General I/0 Bus
(e.g., PCI)

Peripheral I/0O Bus
(e.g., SCSI, SATA, USB)

e How should I/O devices be integrated into systems?
o What are the general mechanisms?
e How can we make them efficient?

Modern Architecture

PCle
Graphics

Graphics |«

PCle

Network

Memory
Interconnect
CPU Memory
=
a
eSATA
[| Disk
I/0O Chip —1 Di
[— 1 Di I

Keyboard

uSB
| 1=

A Canonical Device

Registers: Status Command Data interface

Micro-controller(CPU))
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

e status register: read current device state
e command register: send commands to device
e data register: read or write data a word at a time

Devices: Polling for Response

While (STATUS == BUSY)
; // wait until device is not busy
Write data to DATA register
Write command to COMMAND register
(starts the device and executes the command)
While (STATUS == BUSY)
; // wait until device is done with your request

e Simple
o [nefficient
 CPU occupied doing nothing

Devices: interrupts

CPU |1 (1]1]1]1 11117171

Polling

Disk 1111 11]1

CPU [1|1 1|1 |1 iy 1 |1 (1|11

Interrupts

Disk 11111

e Send request
Do something else
» Reschedule process only when interrupt signals finished

Efficiency Issues With Interrupts

e Fast jobs: first poll might have found job finished
e Hybrid: poll for a bit, then block
o Livelock: per-packet interrupts might monopolize CPU
o (Coalescing: device delays to combine multiple interrupts
o Writing large blocks to device is a poor use of CPU

CPU [1|1 |11 |1]c|c|cCc iy 1 1

Prog 10

Disk 111111

e Direct Memory Access (DMA)
CPU [1|1 [1]1]1 IR 1 | 1

DMA

DMA c|lc|c

Disk 117111

DMA

e Starting
e write address, length of data block to device data registers
e start by writing to control register
e do something else
e Finish
e raise interrupt to signal finish
: task 1 : task 2
copy data rom memory

CcPU |1|1|1|1|2|2|2|2|2|2|2|2|1|1|1|

DMA

Oisk EIERRNERED

Communicating w/ devices

o Specific I/O instructions
e instructions in and out on x86

e Memory-mapped I/O
e each register mapped to specific kernel address
e Kkernel uses ordinary 1oad and store

File Systems Stack

o Want any file system to write to any device

Application g
RLLLL POSIX API [open, read, write, close, etc.] LLLELL
File System Raw
Generic Block Interface [block read/write] %
Generic Block Layer %
Specific Block Interface [protocol-specific read/write] EJ

Device Driver [SCSI, ATA, etc.]

e more than 70% of os code is in device drivers

Example Device: IDE interface

wait for drive:

Control Register:

e read status register until READY and not Address 0x3F6 = 0x08 (0000 1REO): R=reset,
BUSY E=0 means "enable interrupt"
- C d Block R ist :
sector count, logical block e re s oe1re e et
H Address 0x1F1 = Error
address, drive number to Address 0x1F2 = Sector Count
. Address 0x1F3 = LBA low byte
Commaﬂd reglsters Address 0x1lF4 = LBA mid byte
Address 0x1F5 = LBA hi byte
Address 0x1F6 = 1B1D TOP4LBA: B=LBA, D=drive
Start |/O Address 0x1F7 = Command/status
e issue read/write to command register Status Register (Address Ox1F7):

. 7 6 5 4 3 2 1 0
data transfer (ertes) BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR
o wait until READY and DRQ (drive request Error Register (Address 0x1F1): (check when ERROR==

for data) 7 6 5 4 3 2 1 0

BBK UNC MC IDNF MCR ABRT TONF AMNF

e write data to port BBK - Bad Block

. UNC =T table dat

handle interrupts MC - Media Chamged oo
IDNF = ID mark Not Found

e per sector transferred, or batch MCR = Media Change Requested

. ABRT = Command aborted

error handling TONF = Track 0 Not Found

AMNF = Address Mark Not Found

e read status register

Example IDE Driver

void ide_rw(struct buf =*b) {
acquire (&ide_lock);

for (struct buf **pp

&ide
7

*pp = b;

if (ide_queue == Db)
ide_start_request (b);

while ((b->flags & (B_VALID
sleep (b, &ide_lock);

release (&ide_lock);

static void ide_start_request (
ide_wait_ready();

_queue; *pp; Pp=& (*pp)->gnext)
// walk queue
// add request to end
// if g is empty
// send req to disk
IB_DIRTY)) != B_VALID)
// wait for completion

struct buf xb) {

outb (0x3f6, 0); // generate interrupt

outb (0x1£f2, 1); // how many sectors?

outb (0x1£f3, b->sector & O0xff); // LBA goes here

outb (0x1f4, (b->sector >> 8) & Oxff); // and here

outb (0x1£f5, (b->sector >> 16) & O0xff); // and here!

outb (0x1f6, 0xel0 | ((b—->dev&l)<<4) | ((b->sector>>24)&0x0f));

if (b->flags & B_DIRTY) {
outb (0x1£f7, IDE_CMD_WRITE)
outsl (0x1f0, b->data, 512/
else {
outb (0x1£7,

}
IDE_CMD_READ) ;

}

// this is a WRITE
// transfer data too!

’

4);

// this is a READ (no data)

Persistence

e 37 - Hard Disk Drives
e 38 -RAID
e 39 - File and Directories

Magnetic Hard Drives

e platter has set of concentric tracks
e each track divided into sectors
e sectors read by read-write head

track 7 «— spindle

— arm assembly

sector s

read-write

head

',

rotation

Computing the Cost

e Costis:
+ seek time: move to correct track

+ rotational delay: disk must rotate Rotates this way
until we get to correct sector <

+ transfer time: time to read a
sector
e Also, disk has:

e ftrack cache: head always
reading, remembering

e scheduler: more later...

/O Speeds

e |/O time defined as:
° TI/O — Teek + T

S rotation

+1

ransfer

e Rate of I/O:
S lZetmnsfer

R RI/O = T
1/0

o Workload types
e random - need a seek
e sequential - consecutive blocks should not require seek

Example

e Examples:
« WD 6TB Red Plus, 5400 RPM, SATA 6Gb/sec, 128 MB cache (2024)

e 5400 RPM, 100 sectors/track, sector 4KB, seek time 2 msec:
.« 5400 RPM = _ . 11.1msec/rot = avg rot latency = 5.50 msec

5400/60
Yyansfer = 11.1msec/100 = 0.11 msec
e seektime = 3.00 msec
e tota = 8.61 msec
e Implies: 1000/8.61 = 116sectors/sec = 116 x 4096 = 475 MB/sec

e But...they claim much higher average throughput
e constantly reading/caching everything under head
e |ocality, locality, locality.
e sequential I/O is a Good Thing

Rotates this way
-— o

Optimizations

e track cache:
e read head always reading

o track skew: O
e sectors laid out so if cross track boundaries, no extra delay

e When to ack:
e write-back

e ack when data in memory dangerous! but fast!
e write-through
e ack when data on disk safe

Disk Scheduling

e Shortest-seek-time First (SSTF)
e order the request queue by track
e pick requests on the nearest queue

Rotates this way
L

SSTF: Scheduling Request 21 and 2

Issue the request to 21 - issue the request to 2

 Downsides
e OGS doesn’t know drive geometry
e Starvation...

Elevator

* Move across the disk servicing requests in order of tracks
e SCAN: back and forth across tracks
e outer-to-inner, then inner-to-outer

o |f request arrives for track on current sweep, it is queued
until next sweep

« F-SCAN
e Freeze queue while doing a sweep
e Avoids starvation of distant requests
e (C-SCAN (circular scan)
e Sweep from outer-to-inner, reset, then outer-to-inner, etc.

How to Account for Positioning”?

If seeks much slower than rot. lat.: Rotates this way
e optimize for shorter seeks

e request 16 is next

e SSTFisfine

If seeks much faster than rot. lat.:
e optimize for smaller rotation lat.
e 8is next

SPTF:

e Shortest positioning time first O
e OS does not have information SSTF: Sometimes Not Good Enough
On-disk scheduler

o efficient SPTF

e |/O merging

Sequential vs Random Example

e sequential (S) vs random (R). Assume:

» Sequential : transfer 10 MB on average as continuous data.
» Random : transfer 10 KB on average.

» Average seek time: 7 ms

» Average rotational delay: 3 ms

e Transfer rate of disk: 50 MB/s

¢ Results:
< = Amount of Data _ 10 MB
" Timetoaccess 210 ms

. Amount of Data _ 10 KB

Time to access 10.195 ms

=47.62 MB /s

=0.981 MB /s

