Persistence

e 40 - File System Implementation

o 41 - Locality and the Fast File System
e 42 - Crash Consistency

e 43 - Log-structured File Systems

e 44 - Flash-based SSD

e 45 - Data Integrity and Protection

45

|_et’s Start With Blocks...

e File systems address disks by block
» [ogical block numbers are an arbitrary mapping over physical
e Dblocks are multiples of disk sectors
e usually 8k or 16k (512 bytes for GeekOS)
e Assume 512-byte sectors and 4k pages in the following
e physical block numbers start at O:;

0 1 2 3
PPy L P L Py Lyl
0 7 8 15 16 23 24 31

6
L]

4 5
LTI L]
32 39 40

7
HENEEEEREERRNEED
55 56 63

47 48

46

Disk Organization

e Blocks on disk

e super block
e configuration for a specific file system instance
e boot code
e size and location of inode tables, etc.

e (ata blocks
* Dblocks containing file data

e jnode blocks
e inode structures w/ file metadata

e ndirect pointer blocks
» Dblocks full of pointers to other blocks

e bitmaps
e used/free information for data and inode blocks

47

Simplified Disk Layout

e array of per-file metadata in inodes:
e /number : index into the inode table
o file type (regular file, directory, etc.)
e size, number of blocks

e protection info, ownership inode 32

e access information
e number of links
e pointers to data blocks

16 17 18 19 | 32 | 33 34 | 35 48 | 49

51

64

20 21 22 | 23| 36 | 37 38 39 52 53

55

68

24 | 25 26 | 27 | 40 | 41 42| 4 56 57

59

72

63

76

4KB 8KB 12KkB 16KB 20KB 24KB

28KB

32KB

48

Ext?2 (old linux) Inodes

Size Name What is this inode field for?

2 mode can this file be read/written/executed?

2 uid who owns this file?

4 size how many bytes are in this file?

4 time what time was this file last accessed?

4 ctime what time was this file created?

4 mtime what time was this file last modified?

4 dtime what time was this inode deleted?

4 gid which group does this file belong to?

2 links_count how many hard links are there to this file?

2 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?

4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total), often 2 indrect, 1 doubly indirect
4 generation file version (used by NFS)

4 file_acl a new permissions model beyond mode bits

4 dir_acl called access control lists

4 faddr an unsupported field

12 1_osd2 another OS-dependent field

49

Indirect blocks

o W/ 512-bytes blocks, 4-byte pointers:
e the 15 block pointers can accommodate files up to size 7.5K

o W/ a single level of indirection:
512
. 15%

X 512 = 15 x 2'6 = 983K, much larger!

e W/ double indirection:

512 512
. 15><T><T><512= 15 x 2% = 120MB

e Used in most large file systems:
e Linux EXT2, EXT3, NetApp’s WAFL, Unix file system
e Linux EXT4 uses extents instead of simple pointers
e extent lets a pointer reference consecutive blocks

50

File System Numbers

e Rules of thumb:
e most are small 2K most common
e avg size is growing over 200K
e most bytes are in large files
e there are many 100K on average
e most FS are about half full disk size grows, so do files
e directories typically small most have 20 or fewer

51

Reading a file from disk

* Issue an open(“/foo/bar”’, O_RDONLY),

* Traverse the pathname
* begin at the root of the file system (/)
* root inode number often 2 (in superblock)
* read in block containing inode 2.
* use “/“ pointer blocks to get “/“ directory contents
* recurse on “/foo”
* check permissions, memory for metadata, file descriptor
* when read () issued
* consult inode, find and read in first block
* update open file table, file offset
* When file closed

» dealloc file descriptor, logically the file may be deallocated, but
not usually done here

52

Open and read /foo/bar timeline

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data data data
[0 [[2]

read
read
open(bar) read
read
read
read t

read() read
write

read v

read() read
write

read

read() read
write

31/0s

53

Create /foo/bar timeline

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data data data
o0 [I[2]
read
read
read
" read
(] create read
) (/foo/bar) write write
write
write
read t
® read
Q write() write
0 write v
write
read
read
write() write
write
write
read
read
write() write
write
write

54

Unified Buffer Cache

e puffer cache
o recently used pages/disk-blocks held in memory
e writes buffered(delayed)
e consecutive writes batched
e scheduled more efficiently
e dynamically partitioned (not fixed size)
e some apps (e.g. databases) ignore the cache
e call rsync()
e use direct I/O interfaces to disk
e write to raw disks

55

Locality and the Fast File System (FFS)

o “old” file system

S| Inodes Data

e performance starts bad, gets worse
e fragmentation as files deleted and created
e Dblock size too small (slow transfers)
e ijnodes not near data
e FFS fixes many of these problems
ebut we are still talking about the 1990s...

56

Cylinder groups

e ... could be useful but disks do not export enough info

Single track (e.g., dark gray)

p -
L
c
o8 2
°85 3
T O
££S £8
SCmo S
©EQ 8935
o E 30
(&} oS 3
ECEG .= O
'C-o-':l:_: 007
COTE o0
O28qg S5
EL¥ >0m
© OO O Il
n © © =z
- pZd
-+ S
B o,
2358 o
35 ?
© o
|_

Block Groups

e FFS uses block groups
e disk maps onto cylinder groups
e each has superblock, bitmaps, inodes, data

ib db Inodes Data

o “Keep related stuff together” - single group
e most directories
e file data and related inodes
* large files have chunks sprayed across multiple groups

not include black track]

How Far are Accesses

o How “far away” file accesses were

from one another in the directory tree.

s A 100%
proc/sre/foo.c

proc/sre/bar.c

the distance of two file access is 1 80%
proc/src/foo.c
proc/obj/foo.o

the distance of two file access is 2

60%

J

40%

Cumulative Frequency

Trace

* 7% of file accesses to the same file

20% X Random

+ Nearly 40% of file accesses in the same

H 0%
directory o 2 4 6 8 10

+ 25% of file accesses were two distances Path Difference

59

Large File Exception

e Usual file placement policy
e alarge file might fill a group entirely
e |ose directory locality

GO G1 G2 G3 G4 G5 G6 G7 G8 G9

01234 .
£6789 G: block group

e Fix: spread large chunks across multiple groups
* make chunks large enough to perform well

GO G1 G2 G3 G4 G5 G6 G7 G8 G9

90 01 23 45 67

60

Log (Chunk Size Needed)

How Large Should Chunks Be”

e |f want 50% of peak disk performance
e = half time seeking, half time

transferring data
10M
___________ 90%, M o If we assume:
M1 5, 5B | = disk bandwidth 1GB/sec
= positioning time 5 msec
| ; IGB IMB
32K : ! . = = need 5 X 1MB = 5MB chunks
: . sec msecC
1K

T i T : 1
0% 25% 50% 75% 100%
Percent Bandwidth (Desired)

e 90% peak performance w/ 45 MB
chunks

61

Simple Approach Used by FFS

o Use inode structure
e direct links and blocks same group
e indirect blocks, and blocks pointed to, different group
e each 1024 blocks (4MB) in different group (4K pages, 4-byte ptr)

S|ib | db Data

12 direct
blocks

2 indirect
blocks {
inode
..
S|ib | db Data

62

Errata

e more internal fragmentation
e used subblocks
e copy to regular blocks when full
e 11ibc buffers, so most large files never subblock’d

e parameterization
e blocks laid out so that OS has time to request block i + 1
after reading block it, before i + 1 rotates past
e track buffer
e |ong file names
e symbolic links

63

