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|_et’s Start With Blocks...

e File systems address disks by block
» [ogical block numbers are an arbitrary mapping over physical
e Dblocks are multiples of disk sectors
e usually 8k or 16k (512 bytes for GeekOS)
e Assume 512-byte sectors and 4k pages in the following
e physical block numbers start at O:;
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Disk Organization

e Blocks on disk

e super block
e configuration for a specific file system instance
e boot code
e size and location of inode tables, etc.

e (ata blocks
* Dblocks containing file data

e jnode blocks
e inode structures w/ file metadata

e ndirect pointer blocks
» Dblocks full of pointers to other blocks

e bitmaps
e used/free information for data and inode blocks
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Simplified Disk Layout

e array of per-file metadata in inodes:
e /number : index into the inode table
o file type (regular file, directory, etc.)
e size, number of blocks

e protection info, ownership inode 32

e access information
e number of links
e pointers to data blocks
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Ext?2 (old linux) Inodes

Size Name What is this inode field for?

2 mode can this file be read/written/executed?

2 uid who owns this file?

4 size how many bytes are in this file?

4 time what time was this file last accessed?

4 ctime what time was this file created?

4 mtime what time was this file last modified?

4 dtime what time was this inode deleted?

4 gid which group does this file belong to?

2 links_count how many hard links are there to this file?

2 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?

4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total), often 2 indrect, 1 doubly indirect
4 generation  file version (used by NFS)

4 file_acl a new permissions model beyond mode bits

4 dir_acl called access control lists

4 faddr an unsupported field

12 1_osd2 another OS-dependent field
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Indirect blocks

o W/ 512-bytes blocks, 4-byte pointers:
e the 15 block pointers can accommodate files up to size 7.5K

o W/ a single level of indirection:
512
. 15%

X 512 = 15 x 2'6 = 983K, much larger!

e W/ double indirection:

512 512
. 15><T><T><512= 15 x 2% = 120MB

e Used in most large file systems:
e Linux EXT2, EXT3, NetApp’s WAFL, Unix file system
e Linux EXT4 uses extents instead of simple pointers
e extent lets a pointer reference consecutive blocks
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File System Numbers

e Rules of thumb:
e most are small 2K most common
e avg size is growing over 200K
e most bytes are in large files
e there are many 100K on average
e most FS are about half full disk size grows, so do files
e directories typically small most have 20 or fewer
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Reading a file from disk

* Issue an open(“/foo/bar”’, O_RDONLY),

* Traverse the pathname
* begin at the root of the file system (/)
* root inode number often 2 (in superblock)
* read in block containing inode 2.
* use “/“ pointer blocks to get “/“ directory contents
* recurse on “/foo”
* check permissions, memory for metadata, file descriptor
* when read () issued
* consult inode, find and read in first block
* update open file table, file offset
* When file closed

» dealloc file descriptor, logically the file may be deallocated, but
not usually done here
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Open and read /foo/bar timeline

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data data data
[0 [ [2]

read
read
open(bar) read
read
read
read t

read() read
write

read v

read() read
write

read

read() read
write

31/0s
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Create /foo/bar timeline

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data data data
o0 [ I[2]
read
read
read
" read
(] create read
) (/foo/bar) write write
write
write
read t
® read
Q write() write
0 write v
write
read
read
write() write
write
write
read
read
write() write
write
write
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Unified Buffer Cache

e puffer cache
o recently used pages/disk-blocks held in memory
e writes buffered(delayed)
e consecutive writes batched
e scheduled more efficiently
e dynamically partitioned (not fixed size)
e some apps (e.g. databases) ignore the cache
e call rsync()
e use direct I/O interfaces to disk
e write to raw disks
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Locality and the Fast File System (FFS)

o “old” file system

S| Inodes Data

e performance starts bad, gets worse
e fragmentation as files deleted and created
e Dblock size too small (slow transfers)
e ijnodes not near data
e FFS fixes many of these problems
e ....but we are still talking about the 1990s...
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Cylinder groups

e ... could be useful but disks do not export enough info
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Block Groups

e FFS uses block groups
e disk maps onto cylinder groups
e each has superblock, bitmaps, inodes, data

ib db Inodes Data

o “Keep related stuff together” - single group
e most directories
e file data and related inodes
* large files have chunks sprayed across multiple groups

not include black track]




How Far are Accesses

o How “far away” file accesses were

from one another in the directory tree.

s A 100%
proc/sre/foo.c

proc/sre/bar.c

the distance of two file access is 1 80%
proc/src/foo.c
proc/obj/foo.o

the distance of two file access is 2

60%

J

40%

Cumulative Frequency

Trace

* 7% of file accesses to the same file

20% X Random

+ Nearly 40% of file accesses in the same

H 0%
directory o 2 4 6 8 10

+ 25% of file accesses were two distances Path Difference
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Large File Exception

e Usual file placement policy
e alarge file might fill a group entirely
e |ose directory locality

GO G1 G2 G3 G4 G5 G6 G7 G8 G9

01234 .
£6789 G: block group

e Fix: spread large chunks across multiple groups
* make chunks large enough to perform well

GO G1 G2 G3 G4 G5 G6 G7 G8 G9

90 01 23 45 67
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Log (Chunk Size Needed)

How Large Should Chunks Be”

e |f want 50% of peak disk performance
e = half time seeking, half time

transferring data
10M
___________ 90%, M o If we assume:
M1 5, 5B | = disk bandwidth 1GB/sec
= positioning time 5 msec
| ; IGB IMB
32K : ! . = = need 5 X 1MB = 5MB chunks
: . sec msecC
1K

T i T : 1
0% 25% 50% 75% 100%
Percent Bandwidth (Desired)

e 90% peak performance w/ 45 MB
chunks
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Simple Approach Used by FFS

o Use inode structure
e direct links and blocks same group
e indirect blocks, and blocks pointed to, different group
e each 1024 blocks (4MB) in different group (4K pages, 4-byte ptr)

S|ib | db Data

12 direct
blocks

2 indirect
blocks {
inode
..
S|ib | db Data
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Errata

e more internal fragmentation
e used subblocks
e copy to regular blocks when full
e 11ibc buffers, so most large files never subblock’d

e parameterization
e blocks laid out so that OS has time to request block i + 1
after reading block it, before i + 1 rotates past
e track buffer
e |ong file names
e symbolic links
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