
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency
● 43 - Log-structured File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

45

Let’s Start With Blocks…
● File systems address disks by block

● Logical block numbers are an arbitrary mapping over physical
● blocks are multiples of disk sectors
● usually 8k or 16k (512 bytes for GeekOS)

● Assume 512-byte sectors and 4k pages in the following
● physical block numbers start at 0:

●

46

0 1 2 3

4 5 6 7

Disk Organization
● Blocks on disk

● super block
● configuration for a specific file system instance
● boot code
● size and location of inode tables, etc.

● data blocks
● blocks containing file data

● inode blocks
● inode structures w/ file metadata

● indirect pointer blocks
● blocks full of pointers to other blocks

● bitmaps
● used/free information for data and inode blocks

47

Simplified Disk Layout
● array of per-file metadata in inodes:

● inumber : index into the inode table
● file type (regular file, directory, etc.)
● size, number of blocks
● protection info, ownership
● access information
● number of links
● pointers to data blocks

48

inode 32

Ext2 (old linux) Inodes

49

Size Name What is this inode field for?
2 mode can this file be read/written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
4 gid which group does this file belong to?
2 links_count how many hard links are there to this file?
2 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osd1 an OS-dependent field
60 block a set of disk pointers (15 total), often 2 indrect, 1 doubly indirect
4 generation file version (used by NFS)
4 file_acl a new permissions model beyond mode bits
4 dir_acl called access control lists
4 faddr an unsupported field
12 i_osd2 another OS-dependent field

Indirect blocks
● W/ 512-bytes blocks, 4-byte pointers:

● the 15 block pointers can accommodate files up to size 7.5K
● W/ a single level of indirection:

● , much larger!

● W/ double indirection:

●

● Used in most large file systems:
● Linux EXT2, EXT3, NetApp’s WAFL, Unix file system
● Linux EXT4 uses extents instead of simple pointers

● extent lets a pointer reference consecutive blocks

15 * 512
4 × 512 = 15 × 216 = 983K

15 × 512
4 × 512

4 × 512 = 15 × 223 = 120MB

50

File System Numbers
● Rules of thumb:

● most are small	 2K most common
● avg size is growing	 over 200K
● most bytes are in large files	
● there are many	 100K on average
● most FS are about half full	 disk size grows, so do files
● directories typically small	 most have 20 or fewer

51

Reading a file from disk
• Issue an open(“/foo/bar”, O_RDONLY),
• Traverse the pathname

• begin at the root of the file system (/)
• root inode number often 2 (in superblock)
• read in block containing inode 2.
• use “/“ pointer blocks to get “/“ directory contents

• recurse on “/foo”
• check permissions, memory for metadata, file descriptor

• when read() issued
• consult inode, find and read in first block
• update open file table, file offset

• When file closed
• dealloc file descriptor, logically the file may be deallocated, but

not usually done here
52

Open and read /foo/bar timeline

53

t

3
I/O

s

Create /foo/bar timeline

54

t

5
I/O

s
10

 I/
O

s

write

write

Unified Buffer Cache
● buffer cache

● recently used pages/disk-blocks held in memory
● writes buffered(delayed)

● consecutive writes batched
● scheduled more efficiently

● dynamically partitioned (not fixed size)
● some apps (e.g. databases) ignore the cache

● call rsync()
● use direct I/O interfaces to disk
● write to raw disks

55

Locality and the Fast File System (FFS)
● “old” file system

● performance starts bad, gets worse
● fragmentation as files deleted and created
● block size too small (slow transfers)
● inodes not near data

● FFS fixes many of these problems
● ….but we are still talking about the 1990s…

56

Cylinder groups
● …. could be useful but disks do not export enough info

57

Block Groups
● FFS uses block groups

● disk maps onto cylinder groups
● each has superblock, bitmaps, inodes, data

● “Keep related stuff together” - single group
● most directories
● file data and related inodes
● large files have chunks sprayed across multiple groups

58

How Far are Accesses

59

● Usual file placement policy
● a large file might fill a group entirely
● lose directory locality

● Fix: spread large chunks across multiple groups
● make chunks large enough to perform well

Large File Exception

60

How Large Should Chunks Be?
● If want 50% of peak disk performance

● half time seeking, half time
transferring data

● If we assume:
▪ disk bandwidth 1GB/sec
▪ positioning time 5 msec
●

● 90% peak performance w/ 45 MB
chunks

⇒

1GB
sec

= 1MB
msec

⇒ need 5 × 1MB = 5MB chunks

61

45 MB

 5 MB

● Use inode structure
● direct links and blocks same group
● indirect blocks, and blocks pointed to, different group
● each 1024 blocks (4MB) in different group (4K pages, 4-byte ptr)

Simple Approach Used by FFS

62

Errata
● more internal fragmentation
● used subblocks

● copy to regular blocks when full
● libc buffers, so most large files never subblock’d

● parameterization
● blocks laid out so that OS has time to request block

after reading block it, before rotates past
● track buffer
● long file names
● symbolic links

i + 1
i + 1

63

