
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

64

Crash Consistency and Journaling
● How to update the disk despite crashes?

● how ensure system always in self-consistent state, despite
partial writes?

● Old systems
● fsck - reads through entire disk, ensuring consistency

● inodes point to allocated data
● directories point to allocated, valid inodes

● Newer systems
● journaling (also called write-ahead logging)

65

Example
● Tiny FS, one file (w/ one block) allocated:

● Inode:

66

owner : keleher
permissions : read-write
size : 1
pointer : 4
pointer : null
pointer : null
pointer : null

Example, cont.
● When we append by adding another block of data…

● allocate and fill new data block
● update inode to point to block, change size
● change data bitmap

67

owner : keleher
permissions : read-write
size : 1
pointer : 4
pointer : null
pointer : null
pointer : null

Note that all of these changes
sit in the buffer cache for some
unspecified time

Crash scenarios
● just the data block is written

● not a problem
● just the updated inode (I[v2]) is written to disk

● block has garbage
● also, bitmap disagrees w/ inode

● just the updated bitmap is written to disk
● no pointer to invalid data, but
● space leak

● inode and bitmap written
● block has garbage

● inode and data block written
● all good, except bitmap doesn’t know it

● bitmap and data block written
● bitmap indicates block used, but no idea for what

68

FFS Write Ordering

● Writes
● file data blocks asynchronous
● metadata (inodes and directory contents) synchronous

● Implications
● file create call expensive:

● sync write file inode
● sync write directory data
● sync write directory inode

● asynchronous writes:
● file data
● bitmaps can be reconstructed by fsck

69

fsck
● checks superblock, does FS match blocks allocated….
● free blocks: follows inode pointers, ensures all agree w/

bitmaps
● validate inode fields
● validate inode linkcounts (scan entire disk to find hard links)
● look for duplicate pointers to the same block
● look for ptrs outside partition boundaries, etc.
● directory checks : have “.”, “..”, each inode allocated

Very slow, getting worse.

70

Journaling write transactions to log before final locations

● write-ahead logging in database world
● all operations go also to an ordered log
● write log before final locations on disk (bitmaps, inodes, data)
● log is the ground truth

● ext3
● on-disk structures mainly the same as ext2
● but optionally has a journal…

● Example : our canonical update again
● We wish to update inode (I[v2]), bitmap (B[v2]), and data block

(Db) to disk
● Before writing them to their final disk locations, we are now first

going to write them to the log(a.k.a. journal)
71

● TxB : transaction begin
● contains a transaction identifier (TID)

● Middle blocks contain actual writes
● this is physical logging, meaning actual writes are in log
● logical logging means some high level representation of the

change is used instead (like “+2”)
● TxE: transaction end

● also has TID

72

Journaling transaction structure

Journaling How to write the transactions?

● Could write transactions one at a time
● wait until one on disk before issuing next
● this is slow

● Could write all operations at once
● much faster
● unsafe : disk might schedule in some other order
● what if schedule is:

● (1)TxB, I[v2], B[v2], and TxE and only later (2) write Db
● and crash between (1) and (2)

● Looks okay….
73

● Write transaction in two steps:
● First write all blocks except TxE to journal

● Second, write TxE:

● TxE must be a single sector
● disk guarantees all or nothing for a single sector
● TxE must be sector size or less.

● Crash before TxE means transaction has no effect
● Crash after TxE allows transaction to be during replayed recovery

74

Journaling better approach

Journaling entire sequence

● Journal write
● write all transaction entries except TxE, wait until on disk

● Journal commit
● write TxE, wait until on disk

● Checkpoint
● write all pending metadata and data updates to final locations

in actual bitmaps, inodes, and data blocks

75

Journaling batching

● If we create two files in the same directory
● modify inode bitmap twice
● modify data bitmap twice
● modify directory data twice
● possibly modify directory inode twice
● two transactions, each with

● Xtion write
● Xtion commit
● checkpoint

● We can instead batch using a single global Xtion
● just mark all data structures that need to be updated
● after some timeout, create a Xtion w/ all modified data

76

“Xtion” == “transaction”

Journaling recovery

● If crash before transaction is written to log
● pending update dropped

● During recovery
● scan disks for all committed transactions
● replay in order

● Issues:
● Works, but recovery is slow…. (like fsck)
● log eventually fills up, FS stops

77

Journaling recovery

● Create a journal superblock
● mark first and last uncheckpointed Xtions

● So complete protocol is:
● journal write
● journal commit
● checkpoint
● free

● periodically push free Xtions to journal superblock

78

Journaling metadata

● Still a problem : we are writing every block to disk twice
● commit to journal
● checkpoint to on-disk location
● we’ve halved our disk bandwidth!

● (data blocks are majority of journal)

● Metadata journaling
● data blocks not written to journal
● journal would look like:

● Instead: block Db written to final location
79

● When should we write the data blocks to disk?
● Write data to disk after transaction

● file system consistent, but I[v2] might point to garbage
● Write data to final locations first

“write the pointed-to object before the pointer”

● Protocol now:
● data write
● journal metadata write
● wait for completion of first two steps
● journal commit
● checkpoint metadata
● free at some later time

80

Journaling metadata

● Some metadata really should not be replayed:

1. Directory “foo” is updated

2. Directory “foo” id deleted. block 1000 freed.

3. User creates file “foobar” using block 1000 for data

81

Journaling tricksy: block reuse

● Assume crash occurs and all this is in the log:

● During replay, recover process replays everything in the log
● including the write of directory data to block 1000
● thereby overwriting the user data from file foobar

● ext3 creates a revoke record when the directory is deleted
● Recovery first scans for revoke records
● Revoked data not written during recovery

82

Journaling tricksy: block reuse

Data Journaling Timeline

83

t

Metadata Journaling Timeline

84

t

