
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured (and other) File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

85

Other Approaches
● Soft updates

● “pointed-to data must always be written before pointer”
● for all FS data
● difficult, depends on low-level details, hard to get right

● Copy-on-write
● never overwrite in place
● always allocate new blocks for data, inodes, etc.
● change pointer to a tree of data w/ one swap.

● Backpointer consistency
● add “backpointer” from data to pointer that references it

● data block has a backpointer to inode
● when referencing the data through the inode, check that the

data block has a correct backpointer
● win is that no ordering is enforced between writes

86

Log-Structure File System (LFS)
● Motivation

● reads sped up by large buffer caches
● writes are slow, need to be ordered, and synchronous

● common operations, such as creating a small file, require many
random writes

● Idea:
● many synchronous small writes single large log write
● writes ordered s.t. any data pointed to defined in log prior to ptr
● periodically flush log to disk

⟹

87files j, k

LFS Issues inode location

● Most recent version of inodes scattered throughout the disk!
● have an inode map (or imap) that maps inumbers to most

recent version of an inode
● inode map cached in memory
● written to disk as periodic checkpoint (e.g. every 30 seconds)
● new chunks are written into log along w/ everything else:

88

LFS
● Periodically write log to disk

● dependencies between writes are respected by order in log
● therefore any prefix of the log is self-consistent

● At recovery from a crash:
● the on-disk log will have no holes, i.e. it’s a prefix and will be

self-consistent
● any incomplete transactions (file create, etc.) are marked as

garbage
● most recent inode map is read and disk is ready to be used

● In particular
● no re-executions
● no rollbacks (other than marking a few Xtions as garbage)

89

LFS how large should written chunks be?

● Each write incurs a fixed positioning overhead , so the time
to write out D MB is:

 	 (is peak rate)

● Effective rate is therefore:

	 (F is percent of)

of peak rate)
● Solving for D:

●

● With F=0.9, peak transfer of 1 GB, positioning time of 10 msec:
●

Tpos

Twrite = Tposition + D
Rpeak

Rpeak

Reff = D
Tpos + D

Rpeak

= F × Rpeak Rpeak

D = F
1 − F

× Rpeak × Tpos

F = 9 × 1000MB/sec × 0.01sec = 90MB
90

● no overwrite means
● files, dirs, etc. become fragmented
● parts of the log no long active

● all but most-recent versions of inodes
● data that has been modified
● imap chunks

● cleaner process asynchronously copies live data
● from full segments to clean new segments
● cleaned segments are empty, can be used again
● might use this opportunity to segregate by age, activity, etc.

● segment full of rarely-changing data rarely needs cleaning

91

LFS Issues need for a cleaner

LFS cleaning costs

● Cleaner
● read some number of live segments
● copy live data out into fewer new segments
● old segments are now free.

● But….write amplification! Let:
● N : num segments to be cleaned
● u : percent of these segments that is live
● write cost (wc): write amplification of each new byte

● if utilization low, say 10%: 	 wc = 2.22
● if utilization high, say 90%: 	 wc = 20.00

92

write cost = (#readSegs +#writeLive + #writeNew) / (#writeNew)
 = (N + N*u + (N*(1-u)) / (N * (1-u))
 = 2/(1-u)

LFS cleaner notes

● advantages
● asynchronous
● can be done in bulk

● opportunities
● older data less likely to be modified than new data

● can segregate data based on age for cleaner writes

● implemented on bare disk
● log chunk to be written to disk is many pages long
● LFS can report consistency check of all blocks back to OS
● LFS guarantees that pg i written correctly before pg i+1

93

