
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured (and other) File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

93

SSDs
● non-volatile storage

● we will assume NAND flash, though rapidly evolving
● terminology

● a flash chip implements one or more banks (or planes)
● a bank contains some number of (erase) blocks

● might be 128 KB or 256 KB
● a block contains some number of pages

● maybe 4 KB

94

SSDs operations

● reads
● any page can be read, same cost
● very fast, low microseconds

● erase
● before writing, a page’s entire block must be erased
● slow, milliseconds
● needs to be done in advance, usually asynchronously

● program (write)
● entire page written
● slower, 100’s of usec

● tech constantly evolving, but generally costs follow:
● read << write << erase

95

● Unrealistically small for example. All start as valid:

● If we want to write page 0, must first erase:

● Now we can program page 0:

● But, but…pages 1-3 are gone….

SSDs example

96

SSDs deets

● Reliability
● no head crashes
● erasure causes blocks to wear out
● NANDs leak

● not good for archival storage

97

SSDs from flash

● SSD contain
● some amount of RAM for mapping tables
● FLASH
● control logic

● flash translation layer (FTL)
● maps logical blocks to physical pages
● handles erasures asynchronously
● modifies mappings as needed

● because of erasures (we don’t write in place)
● failures

● wear leveling

● log-structured…
98

SSDs ftl

● log structure
● in storage device
● also in file system above
● keeps mapping table

● Assume:
● externally a disk w/ 512-byte sectors
● client is reading/writing 4k blocks
● SSD has many 16-KB blocks, w/ 4-KB pages

99

SSDs example

100

Write a1 to logical block 100, a2 101, b1 2000, b2 2001→ → →

Rewrite c1 100, c1 101→ →

Garbage collect

● direct all writes at a few empty blocks (log blocks)
● log table : per-page mappings (checked first)
● data table : per-block mapping (checked next)

101

SSDs hybrid mapping

But what if re-write 1000, 1001?

Say: a 1000, b 1001, c 1002, d 1003→ → → →

● This is a partial merge
● could clean up by copying c, d to end of log (block 0)

● Might need to copy from many blocks (full merge)
● assume blocks 0, 4, 8, 12 written
● would need to write 0,1,2,3 and 4,5,6,7 and….
● avoid at all costs cache only active portion of FTL⟹

102

SSDs hybrid mapping

c d

● Other issues
● FTL can be expensive
● wear leveling
● cost

● But:

103

SSDs conclusion

Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured (and other) File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

104

Data Integrity how to ensure our data is safe?

● RAID
● good, but assumes fail-stop failures
● also need to worry about:

● latent-sector errors (LSEs)
● block corruption

● over 3 years, 1.5 million drives

105

Latent sector errors:
● causes

● head crashes
● cosmic rays

● hardware for the win….
● in-disk error-correcting codes (ECC)
● ECC fails lead to disk returning an error while reading
● depending on the failure, and the type of ECC, disk might

even be able to correct bit errors
● recover using RAID

● but what if full-disk failure while attempting to recover a
sector?

● use two parity blocks…

106

Data Integrity handling latent sector errors

● problem:
● disk might have incorrect block
● but not be able to detect it.

● causes
● buggy firmware might write block to wrong location
● block corrupted on way to disk

● detection
● file systems use checksums w/ various speeds and strengths:

● XOR of all words
● addition of all words
● cyclic redundancy check (CRC)

● but where to store checksums?

107

Data Integrity block corruption

● Where to store checksums?
● manufacturer can format drive w/ 520-byte sectors

● consolidate checksums on another sector

● How do we use them?
● compare checksums when reading, hope for a backup

● What if block stored to sector y instead of x?
● checksum would be valid
● include x in the checksum

bx

108

Data Integrity misdirected blocks

Distributed Systems

● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● Spore

110

Distributed Systems

Communication Basics
● Building distributed systems

● all components fail
● communication fails
● how to build systems that rarely fail from components that do?

● Issues:
● performance

● especially with interconnects much slower than buses
● security

● systems span users, domains
● the Internet is scary

● communication
● what are the right primitives?
● what are the right types of applications?

111

Communication
“progress and correctness of distributed consensus algorithms is
impossible to prove in asynchronous environments” - FLP theorem

● communication is fundamentally unreliable
● packet loss
● packet corruption
● packet delays

● maybe don’t rely on reliability
● maybe add encryption to the link!
● but….

112

End-to-End Argument crypto is always good, right?

113

A B3DES encryption

● example of end-to-end argument says:
● provided encryption might not be good enough
▪ 3DES is ancient, maybe want to use AES, blowfish

● provided encryption might be too expensive
▪ might not need encryption at all, just adds overhead

● app semantics might be needed
▪ different app messages might have different needs

● but strong semantics in underlying layers do help

