Persistence

44 - Flash-based SSD
45 - Data Integrity and Protection

93

SSDs

e non-volatile storage
e we will assume NAND flash, though rapidly evolving
e terminology
e aflash chip implements one or more banks (or planes)
e abank contains some number of (erase) blocks
e might be 128 KB or 256 KB
e ablock contains some number of pages
* maybe 4 KB

Block: 0 1 2
Page: 00 01 02 03(04 05 06 07(08 09 10 11
Content: | | | | | 1] L 1]

94

S S D S operations

e reads

e any page can be read, same cost

e very fast, low microseconds
e crase

» pefore writing, a page’s entire block must be erased

e slow, milliseconds

e needs to be done in advance, usually asynchronously
e program (write)

e entire page written

e slower, 100’s of usec

e tech constantly evolving, but generally costs follow:
e read << write << erase

95

S S D S example

e Unrealistically small for example. All start as valid:

Page 0 Page 1 Page 2 Page 3
| 00011000 | 11001110 | 00000001 | 00111111 |
VALID VALID VALID VALID

e |f we want to write page 0, must first erase:
Page 0 Page 1 Page 2 Page 3
L1111 | 11 | 111 | 1111111 |
ERASED ERASED ERASED ERASED

e Now we can program page O:
Page 0 Page 1 Page 2 Page 3
| 00000011 | 11111111 [11111111 [11111111 |
VALID ERASED ERASED ERASED

e But, but...pages 1-3 are gone....

96

SS D S deets

Read Program Erase

Device (us) (us) (us)
SLC 25 200-300 1500-2000
MLC 50 600-900 3000
TLC “75 7900-1350 4500

e Reliability
e no head crashes
e erasure causes blocks to wear out
e NANDs leak
e not good for archival storage

97

S S D S from flash

e SSD contain
e some amount of RAM for mapping tables
e FLASH
e control logic
o flash translation layer (FTL)
e maps logical blocks to physical pages
e handles erasures asynchronously
e modifies mappings as needed
e because of erasures (we don’t write in place)
e failures
e wear leveling

e Jog-structured...

98

SSDS #

e |og structure

in storage device
also in file system above
keeps mapping table

e Assume:
externally a disk w/ 512-byte sectors

client is reading/writing 4k blocks

SSD has many 16-KB blocks, w/ 4-KB pages

99

S S D S example

Write al to logical block 100, a2 — 101, bl — 2000, b2 — 2001

Rewrite ¢l — 100, cl — 101

Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [[[] [[] [[1]
State: i i i i i@ i i ii i i i
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [[[| L[] [[]
State: E E E E|[i i i i}|i i i ‘i
Table: 100 =0
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: |a1| I | [| | | | |
State: V E E E|i i i i[i i i i
Table: 100 =0 101 =1 20002 2001—+>3
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [a1]a2]bi[b2] [[| [T 1
State: V V.V V|i i i il|i i i i

Table: 100 =4 101 =5 2000—+2 2001—+>3
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [a1]a2[b1[b2[c1[c2] | [T 1
State: V V V V|V V E E|i i i i

Garbage collect

Table: 100 =4 101 -5 20006 20017
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Jontent: | cl Icz |b1 |b2

State: E E E E|V V. V V|i i i i

100

S S D S hybrid mapping

e direct all writes at a few empty blocks (log blocks)
e |og table : per-page mappings (checked first)
e data table : per-block mapping (checked next)

Say:a — 1000, b — 1001, c — 1002, d — 1003

Log Table:
Data Table: 250 —>8
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [| | alb[c|d
State: i i i i|i i i i|V V V V
Log Table: ~ 1000—0 1001—-1 1002—2 1003—3
Data Table: 250 =8
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [a'[b' [c [d alb[c]d
State: V V V V|i i i i|V V V V
Log Table:
Data Table: 250 -0
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: | a | b’ | © | d |
State: V. V. V. V|i i i i|i i i i

But what if re-write 1000, 1001?

Log Table: ~ 1000—-0 1001-»>1
Data Table: 250 -8
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [a [b'[| alb[c[d
State: V. V i i|i i i i|V V V V

101

S S D S hybrid mapping

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07[08 09 10 11
Content: [a' [b']| | alb[c]|d

State: V V i i|i i i i|V V V V

Block:
Page:

Content

State:

0 1 2
00 01 02 03|04 05 06 o7§xg9ya4
: [a]p]c]d alpfc]d

vV vV i i

\/

e This is a partial merge
e could clean up by copying ¢, d to end of log (block 0)

» Might need to copy from many blocks (full merge)
e assume blocks 0, 4, 8, 12 written
e would need to write 0,7,2,3 and 4,5,6, 7 and....

e avoid at all costs = cache only active portion of FTL

102

S S D S conclusion

e Otherissues
e FTL can be expensive
e wear leveling

e cost
e But:
Random Sequential

Reads Writes \ Reads Writes
Device (MB/s) (MB/s) \(MB/s) (MB/s)
Samsung 840 Pro SSD 103 287 421 384
Seagate 600 SSD 84 252 424 374
Intel SSD 335 SSD 39 222 344 354
Seagate Savvio 15K.3 HDD 2 2 223 223

103

Persistence

45 - Data Integrity and Protection

104

Data | ﬂteg r|ty how to ensure our data is safe?

e RAID
e good, but assumes fail-stop failures
e also need to worry about:
e latent-sector errors (LSES)
e block corruption

Cheap Costly
LSEs 9.40% 1.40%
Corruption 0.50% 0.05%

e over 3 years, 1.5 million drives

105

D ata | ﬂ te g I’ |ty handling latent sector errors

Latent sector errors:;

e causes
e head crashes
e COSMiIcC rays
e hardware for the win....
e in-disk error-correcting codes (ECC)
o ECC fails lead to disk returning an error while reading
e depending on the failure, and the type of ECC, disk might
even be able to correct bit errors
e recover using RAID

e but what if full-disk failure while attempting to recover a
sector?

e UsSe two parity blocks...

106

Data | ﬂteg r|ty block corruption

e problem:
e disk might have incorrect block
e put not be able to detect it.
e causes
e buggy firmware might write block to wrong location
* Dblock corrupted on way to disk
e detection
» file systems use checksums w/ various speeds and strengths:
e XOR of all words
e addition of all words
e cyclic redundancy check (CRC)
e put where to store checksums?

107

D at a | N te g [| ty misdirected blocks

e \Where to store checksums?
e manufacturer can format drive w/ 520-byte sectors

D4

clD2]
CD3]
CID4]

D2 D3

C[DO]
CID1]

DO D1

e consolidate checksums on another sector

DO D1 D2 D3 D4

C[Do]

=N
==
O|O|o

C[D4]

 How do we use them?
e compare checksums when reading, hope for a backup
« What if block b, stored to sector y instead of x?

e checksum would be valid

e jnclude x in the checksum
108

Distributed Systems

Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50 - AFS

e Spore

110

Communication Basics

e Building distributed systems
e all components fail
e communication fails
e how to build systems that rarely fail from components that do?
e |ssues:
e performance
e especially with interconnects much slower than buses
e Security
e systems span users, domains
e the Internet is scary
e communication
e what are the right primitives?
e what are the right types of applications?

M

Communication

“orogress and correctness of distributed consensus algorithms is
impossible to prove in asynchronous environments” - FLP theorem

e communication is fundamentally unreliable
e packet loss
e packet corruption
e packet delays
e maybe don’t rely on reliability
e maybe add encryption to the link!
e Dut....

112

E N d ‘tO‘ E N d Arg ume ﬂt crypto is always good, right?

@ <—— 3DESencryption p—>

e example of end-to-end argument says:
e provided encryption might not be good enough
= 3DES is ancient, maybe want to use AES, blowfish
e provided encryption might be too expensive
= might not need encryption at all, just adds overhead
e app semantics might be needed
= different app messages might have different needs

e but strong semantics in underlying layers do help

113

