Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50 - AFS

e GFS

M

Communication Basics

e Building distributed systems
e all components fail
e communication fails
e how to build systems that rarely fail from components that do?
e |ssues:
e performance
e especially with interconnects much slower than buses
e security
e systems span users, domains
e the Internet is scary
e communication
e what are the right primitives?
* what are the right types of applications?

112

Communication

“orogress and correctness of distributed consensus algorithms is
impossible to prove in asynchronous environments” - FLP theorem

e communication is fundamentally unreliable
e packet loss
e packet corruption
e packet delays
e maybe don’t rely on reliability
e maybe add encryption to the link!
e Dut....

113

E N d ‘tO‘ E N d Arg ume ﬂt crypto is always good, right?

@ <—— 3DESencryption p—>

e example of end-to-end argument says:
e provided encryption might not be good enough
= 3DES is ancient, maybe want to use AES, blowfish
e provided encryption might be too expensive
= might not need encryption at all, just adds overhead
e app semantics might be needed
= different app messages might have different needs

e but strong semantics in underlying layers do help

114

D | St I | b u te d SySte m S reliable communication layers

e Need to be able to detect and recover from packet loss:
e acknowledge (“ack”) receipt of a messaage

Sender Receiver

[send message] \»
[receive message]
4””””"___‘_,’———- [send ack]
[receive ack]

Figure 48.3: Message Plus Acknowledgment

D | St I | b u te d SySte m S reliable communication layers

e Need to be able to detect and recover from packet loss:
e acknowledge (“ack”) receipt of a messaage

o What if we don’t get the ack? How do we even know we
don’t get the ack?

Sender Receiver

[send message; — X
keep copy;

set timer]
(waiting for ack)

[timer goes off;

set timer/retry] \}
[receive message]
[send ack]
[receive ack; 4——///

delete copy/timer off]

Figure 48.4: Message Plus Acknowledgment: Dropped Request

D | St [| b u te d SySte m S reliable communication layers

e Need to be able to detect and recover from packet loss:
e acknowledge (“ack”) receipt of a messaage
o What if we don’t get the ack? How do we even know we
don’t get the ack?
Sender Receiver
[send message;

keep copy;
set timer] X

— [receive message]
[send ack]

'&vaiting for ack) Is this ok?

..NO.

[timer goes off;

set timer/retry] \»
[receive message]
[send ack]
[receive ack; //

delete copy/timer off]

Figure 48.5: Message Plus Acknowledgment: Dropped Reply
117

D | St [| b u te d SySte m S reliable communication layers

e 48.4 and 48.5 appear the same to the server...
e but the msg was received in 48.4, and not in 48.5

* thisis bad, as server’s default is to repeat the message, not
good if messages are not idempotent

e fix is to include sequence numbers in messages
e receiver could track every number ever seen, but expensive.
e monotonically increasing sequence numbers better
e receiver tracks highest received sequence number
e acks, but does not execute duplicate messages

e dealing with out-of-order messages (42, 44, 43, 45...)
app-dependent

e Seq numbers important for UDP (unreliable), but TCP uses
much more sophisticated approaches under the hood.

118

Remote Proceo’ure Ca//s

« turn remote requests into procedure calls to local functions
e need interface definition: ~ *nterface |

int funcl (int argl);
int func2(int argl, int arg2);
bi

client stub generator uses interface def to:
e create a msg buffer

e pack (marshal) request into buffer

e send to destination

e synchronously wait for reply

e unpack (unmarshal) return values

e return return values to caller

e server stub generator uses interface def to:
e unpack (unmarshal) the message
e call local func w/ arguments
e pack the return values into a reply buffer
e send the reply

19

Remote Proceo’ure Ca//s

e What about pointers, or other complex data data types?
e architecture- and language-independent encodings
e JSON
e protocol buffers
e e¢tc.

e \What about concurrency in server?
e want the server to be multi-threaded

e need to ensure no data races between server stubs and the
functions they call

* RPC generally doesn’t need reliable communication (TCP)

e “ack”is not needed, as RPC (“the app”) generally returns a
response

120

Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50 - AFS

e GFS

121

N FS Sun Microsystems

e first widely used distributed file system
e clients diskless
e easy sharing
e centralized admin
e security

Client 0

Client 1 \\

Network

Client 2 //

Client 3

RAID

122

NFS

o distributed file system should be transparent

e except possibly in performance
e client issues same file-system calls as standalone system

\ nfs server

Exto| [Extal INFS Client] @ o
networking layer ﬁ networking layer
" NFS Server

e e e e e o 123

N FS actually NFSv2

“a distributed system is one where a machine I've never heard
of goes down and | can't read my email”

- Leslie Lamport: Turing Award Winner for his work on distributed systems

e NFS goals:

e simple and fast file recovery

e Stateless protocol : server keeps no client state
e server scales well
e client crashes transparent
e server crashes transparent
e client must maintain all state the the server needs for any

communication

124

N FS actually NFSv2

e file handle : uniquely describe file or directory

e volume ID
e inode number

e generation number (inumbers get re-used)

NFSPROC_GETATTR

NFSPROC_SETATTR

NEFSPROC_LOOKUP

NFSPROC_READ

NFSPROC_WRITE

NEFSPROC_CREATE

NEFSPROC_REMOVE

NFSPROC_MKDIR

NFSPROC_RMDIR

NFSPROC_READDIR

file handle

returns: attributes

file handle, attributes

returns: —

directory file handle, name of file/dir to look up
returns: file handle

file handle, offset, count

data, attributes

file handle, offset, count, data

attributes

directory file handle, name of file, attributes

directory file handle, name of file to be removed
directory file handle, name of directory, attributes

file handle

directory file handle, name of directory to be removed
directory handle, count of bytes to read, cookie
returns: directory entries, cookie (to get more entries)

125
Client Server
N F S fd = open(”/foo”, ...);
] [+ Send LOOKUP (rootdir FH, “foo”)
rea dln g a fl /e : Receive LOOKUP request
look for “foo” in root dir
return foo’s FH + attributes
Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application
read(fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset
Send READ (FH, offset=0, count=MAX)
Receive READ request
use FH to get volume/inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client
Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app
read(fd, buffer, MAX);
Same except offset=MAX and set current file position = 2*MAX
read(fd, buffer, MAX);
Same except offset=2*MAX and set current file position = 3*MAX
close(fd);
Just need to clean up local structures
Free descriptor “fd” in open file table 126

(No need to talk to server)

N FS server failures

e server crashes / restarts, knowing nothing about clients
e because most client requests are idempotent
e |ookups, reads don’t change server state
e writes contain data and exact offset to write to
e client handles all timeouts in the same way

Case 1: Request Lost
Client Server
[send request] \>X

(no mesg)

Case 3: Reply lost on way back from Server

Client Server
[send request]
\ [recv request]
[handle request]
— [send reply]
X 127

N FS performance

e client-side caching
* read file data (and metadata) cached by client
e all good unless the file changes on the server
e client-side write buffers
e coalescing
e aggregating disparate messages

e However : cache consistency!

128

N FS cache consistency

Problems:
e update visibility
« C, writes foo.c, but does not immediately push to server
« C,reads, sees old version
« C, flushes to server
e stale cache
« C, reads again, still sees old version (foo. ¢ locally cached)
Fixes:
e close-to-open consistency
e every open guaranteed to see every prior write to the server

e must validate cache (GETATTR)
e but maybe not all the time

NFS consistency is weak... (so are most other FSs) 26

N FS server caching

e tons of memory
e wants to use it for disk cache (satisfy reads)
e wants to use it for write buffer (quickly ack writes)
e what could go wrong?

e server could ack a write before writing to disk!
e say file initially has three 4k blocks of data:

):9.9:9.9.9.9.9.9:9.9.9:9.9.9:9.9.9.9.9.9.9.9.9:9.9.9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.4

YY
ZZZZ2ZZ2Z22Z2222Z2Z2Z2222Z2Z2222Z2Z2222Z2Z2Z2222Z222222Z22227Z

e Client overwrites with:
write(aaa.., 0)., write(bbb.., 4k), write(ccc.., 8k):

e server crashes after acking second block, before writing:
dddddddaddadadddddaaddadddddaddaaddadaddadaadadaaaaadaaaaaa

YY <-—— OOpS
ccceceecececcecceceecceccecececececcececcececcccccceccccccece

e client never evens knows that the server crashed

130

