
● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS

111

Distributed Systems

Communication Basics
● Building distributed systems

● all components fail
● communication fails
● how to build systems that rarely fail from components that do?

● Issues:
● performance

● especially with interconnects much slower than buses
● security

● systems span users, domains
● the Internet is scary

● communication
● what are the right primitives?
● what are the right types of applications?

112

Communication
“progress and correctness of distributed consensus algorithms is
impossible to prove in asynchronous environments” - FLP theorem

● communication is fundamentally unreliable
● packet loss
● packet corruption
● packet delays

● maybe don’t rely on reliability
● maybe add encryption to the link!
● but….

113

End-to-End Argument crypto is always good, right?

114

A B3DES encryption

● example of end-to-end argument says:
● provided encryption might not be good enough
▪ 3DES is ancient, maybe want to use AES, blowfish

● provided encryption might be too expensive
▪ might not need encryption at all, just adds overhead

● app semantics might be needed
▪ different app messages might have different needs

● but strong semantics in underlying layers do help

Distributed Systems reliable communication layers

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a messaage

115

Distributed Systems reliable communication layers

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a messaage

● What if we don’t get the ack? How do we even know we
don’t get the ack?

116

Distributed Systems reliable communication layers

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a messaage

● What if we don’t get the ack? How do we even know we
don’t get the ack?

117

Is this ok?
…no.

● 48.4 and 48.5 appear the same to the server…
● but the msg was received in 48.4, and not in 48.5
● this is bad, as server’s default is to repeat the message, not

good if messages are not idempotent
● fix is to include sequence numbers in messages

● receiver could track every number ever seen, but expensive.
● monotonically increasing sequence numbers better

● receiver tracks highest received sequence number
● acks, but does not execute duplicate messages
● dealing with out-of-order messages (42, 44, 43, 45…)

app-dependent
● Seq numbers important for UDP (unreliable), but TCP uses

much more sophisticated approaches under the hood.
118

Distributed Systems reliable communication layers

● turn remote requests into procedure calls to local functions
● need interface definition:

● client stub generator uses interface def to:
● create a msg buffer
● pack (marshal) request into buffer
● send to destination
● synchronously wait for reply
● unpack (unmarshal) return values
● return return values to caller

Remote Procedure Calls

119

● server stub generator uses interface def to:
● unpack (unmarshal) the message
● call local func w/ arguments
● pack the return values into a reply buffer
● send the reply

● What about pointers, or other complex data data types?
● architecture- and language-independent encodings

● JSON
● protocol buffers
● etc.

● What about concurrency in server?
● want the server to be multi-threaded
● need to ensure no data races between server stubs and the

functions they call

● RPC generally doesn’t need reliable communication (TCP)
● “ack” is not needed, as RPC (“the app”) generally returns a

response

Remote Procedure Calls

120

● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS

121

Distributed Systems

NFS Sun Microsystems

● first widely used distributed file system
● clients diskless

● easy sharing
● centralized admin
● security

122

NFS
● distributed file system should be transparent

● except possibly in performance
● client issues same file-system calls as standalone system

123

VFS

Ext2 Ext3 NFS Client

client

networking layer

NFS Server
networking layer

nfs server

“a distributed system is one where a machine I've never heard
of goes down and I can't read my email”
 - Leslie Lamport: Turing Award Winner for his work on distributed systems

● NFS goals:
● simple and fast file recovery
● stateless protocol : server keeps no client state

● server scales well
● client crashes transparent
● server crashes transparent
● client must maintain all state the the server needs for any

communication

124

NFS actually NFSv2

● file handle : uniquely describe file or directory
● volume ID
● inode number
● generation number (inumbers get re-used)

125

NFS actually NFSv2

126

NFS reading a file : client-side and file server actions

● server crashes / restarts, knowing nothing about clients
● because most client requests are idempotent

● lookups, reads don’t change server state
● writes contain data and exact offset to write to

● client handles all timeouts in the same way

127

NFS server failures

NFS performance

● client-side caching
● read file data (and metadata) cached by client
● all good unless the file changes on the server

● client-side write buffers
● coalescing
● aggregating disparate messages

● However : cache consistency!

128

Problems:
● update visibility

● writes foo.c, but does not immediately push to server
● reads, sees old version
● flushes to server

● stale cache
● reads again, still sees old version (foo.c locally cached)

Fixes:
● close-to-open consistency

● every open guaranteed to see every prior write to the server
● must validate cache (GETATTR)
● but maybe not all the time

NFS consistency is weak… (so are most other FSs)

C1
C2
C1

C2

129

NFS cache consistency

● tons of memory
● wants to use it for disk cache 	 (satisfy reads)
● wants to use it for write buffer 	 (quickly ack writes)

● what could go wrong?
● server could ack a write before writing to disk!

● say file initially has three 4k blocks of data:

● client overwrites with:
 write(aaa…, 0)., write(bbb…, 4k), write(ccc…, 8k):

● server crashes after acking second block, before writing:

● client never evens knows that the server crashed
130

NFS server caching

