
● 48 - Communication Basics

● 49 - NFS
● 50 - AFS
● GFS

121

Distributed Systems

NFS Sun Microsystems

● first widely used distributed file system
● clients diskless

● easy sharing
● centralized admin
● security

122

NFS
● distributed file system should be transparent

● except possibly in performance
● client issues same file-system calls as standalone system

123

VFS

Ext2 Ext3 NFS Client

client

networking layer

NFS Server
networking layer

nfs server

“a distributed system is one where a machine I've never heard
of goes down and I can't read my email”
 - Leslie Lamport: Turing Award Winner for his work on distributed systems

● NFS goals:
● simple and fast file recovery
● stateless protocol : server keeps no client state

● server scales well
● client crashes transparent
● server crashes transparent
● client must maintain all state the the server needs for any

communication

124

NFS actually NFSv2

● file handle : uniquely describe file or directory
● volume ID
● inode number
● generation number (inumbers get re-used)

125

NFS actually NFSv2

126

NFS reading a file : client-side and file server actions

● server crashes / restarts, knowing nothing about clients
● because most client requests are idempotent

● lookups, reads don’t change server state
● writes contain data and exact offset to write to

● client handles all timeouts in the same way

127

NFS server failures

NFS performance

● client-side caching
● read file data (and metadata) cached by client
● all good unless the file changes on the server

● client-side write buffers
● coalescing
● aggregating disparate messages
● writes sent back to server asynchronously (but before close())

● However : cache consistency!

128

Problems:
● update visibility

● writes foo.c, but does not immediately push to server
● reads, sees old version
● flushes to server

● stale cache
● closes and reads again, sees old version (foo.c locally cached)

Fixes:
● close-to-open consistency

● every open guaranteed to see every prior write to the server
● must validate cache (GETATTR)
● but maybe not all the time

NFS consistency is weak… (so are most other FSs)

C1
C2
C1

C2

129

NFS cache consistency

● tons of memory
● wants to use it for disk cache 	 (satisfy reads)
● wants to use it for write buffer 	 (quickly ack writes)

● what could go wrong?
● server could ack a write before writing to disk!

● say file initially has three 4k blocks of data:

● client overwrites with:
 write(aaa…, 0)., write(bbb…, 4k), write(ccc…, 8k):

● server crashes after acking second block, before writing:

● client never evens knows that the server crashed
130

NFS server caching

Problem: poor performance for client the same file again

● fix: allow client to cache data and attributes on client

● but when client re-opens not guaranteed most recent version

● fix: have clients re-validate on open
● but slow

● fix: time out the cached attributes
● means data can all be cached, attributes sometimes validated

w/ server before accesses

● but when client re-opens not guaranteed most recent version

(still)

non-fix: NFS consistency is weak… (same true for other FS’s)

i

i

i

i

131

NFS cache consistency

132

NFS innovations

● stateless protocol
● minimizes state server needs to track
● server can crash and recover w/o clients being aware

● itempotent requests
● necessary for statelessness
● client treats network message drops, server failure the same
● client does not need to know which is which

● client and server buffering
● essential for performance
● cache consistency issues

● server flushes writes before acking
● client attribute cache times out

● VFS interface
● makes application API independent of underlying FS

133

NFS later versions

● version v3
● 64-bit sizes and offsets (large files)
● synchronous server writes
● readdirplus (reads dir, also includes the file handles)
● tcp

● version v4
● strong security (kerberos, public key protocols)
● performance improvements
● stateful protocol (mostly for file consistency)
● open standard (IETF)

● 48 - Communication Basics
● 49 - NFS

● 50 - AFS
● Review

134

Distributed Systems

Andrew File System AFS v1

● primary motivation was scale
● how many clients could a single server accommodate?
● user-visible behavior well-defined
● whole-file (not block) caching

135

Andrew File System AFS v2

● Problems w/ v1:
● full path traversal costs (on the server!)
● client issues too many TestAuth msgs
● also:

● load not balanced across servers (fix using volumes)
● server has a process per client (fix using threads)

● Improving the protocol:
● client callbacks:

● promise from the server to notify client if cached file changed
● file identifier (FID)

● volume id
● file id
● “uniquifier” (usually called epochs elsewhere)

136

AFS
example

137

Andrew File System cache consistency

Mentioned two issues w/ NFS:
● update visibility

● when will server be updated w/ client write?
● cache staleness:

● when will clients be informed their versions are out of date?

● AFS procedure:
● client writes, possibly many times
● closes

● writes complete file back to server, becomes visible
● server breaks callback
▪ contact each server w/ a callback and invalidate its copy

all apps on single machine see same copy 138

Andrew File System cache consistency

139

Andrew File System cache consistency

140

● AFS provides also close-to-open consistency
● whole-file caching and updating

● never see concurrent writes diff clients in same version of a
file

● “last writer wins” (really last closer wins)
● Crash recovery complicated

● crashing client might miss callback (client treats cache as
suspect after crash)

● crashing server loses callbacks table
● server might inform all clients after recovery
● or clients constantly check for server liveness w/ heartbeats

● there is a cost to building a more sensible and scalable
caching model

NFS vs AFS
● primarily differ in caching

● What to cache?
● NFS caches blocks
● AFS entire files (on disk)

● When to push writes to server?
● Loosely defined for NFS:
▪ any time from right away, to when file is closed
▪ (only modified blocks)

● If any part modified, AFS pushes entire file at close()
● Final contents after concurrent merges by different clients:

● NFS: writes by the different clients might be intermingled
● AFS: final version reflects the last write; other write is lost

141

Exam 2 review
● exam topics:

● disk performance: perf from latencies
● disk scheduling: SSTF, CSCAN, SCAN
● RAID 0, 1, 5
● FFS: advantages, write order
● journaling, meta-data journaling
● SSDS: simple mapping table, hybrid mapping table,
● end-to-end argument
● LFS: structure, write cost calculations
● NFS and AFS: structure, cache consistency

● what to review
● quizzes 7-10
● lectures after spring break

142

RH 7 review

RH 7 review

RH 8 review

done 4/16

