Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50 - AFS

e GFS

121

N FS Sun Microsystems

e first widely used distributed file system
e clients diskless
e easy sharing
e centralized admin
e security

Client 0

Client 1 \\

Network

Client 2 //

Client 3

RAID

122

NFS

o distributed file system should be transparent

e except possibly in performance
e client issues same file-system calls as standalone system

\ nfs server

Exto| [Extal INFS Client] @ o
networking layer ﬁ networking layer
" NFS Server

e e e e e o 123

N FS actually NFSv2

“a distributed system is one where a machine I've never heard
of goes down and | can't read my email”

- Leslie Lamport: Turing Award Winner for his work on distributed systems

e NFS goals:

e simple and fast file recovery

e Stateless protocol : server keeps no client state
e server scales well
e client crashes transparent
e server crashes transparent
e client must maintain all state the the server needs for any

communication

124

N FS actually NFSv2

e file handle : uniquely describe file or directory

e volume ID
e inode number

e generation number (inumbers get re-used)

NFSPROC_GETATTR

NFSPROC_SETATTR

NEFSPROC_LOOKUP

NFSPROC_READ

NFSPROC_WRITE

NEFSPROC_CREATE

NEFSPROC_REMOVE

NFSPROC_MKDIR

NFSPROC_RMDIR

NFSPROC_READDIR

file handle

returns: attributes

file handle, attributes

returns: —

directory file handle, name of file/dir to look up
returns: file handle

file handle, offset, count

data, attributes

file handle, offset, count, data

attributes

directory file handle, name of file, attributes

directory file handle, name of file to be removed
directory file handle, name of directory, attributes

file handle

directory file handle, name of directory to be removed
directory handle, count of bytes to read, cookie
returns: directory entries, cookie (to get more entries)

125
Client Server
N F S fd = open(”/foo”, ...);
] [+ Send LOOKUP (rootdir FH, “foo”)
rea dln g a fl /e : Receive LOOKUP request
look for “foo” in root dir
return foo’s FH + attributes
Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application
read(fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset
Send READ (FH, offset=0, count=MAX)
Receive READ request
use FH to get volume/inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client
Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app
read(fd, buffer, MAX);
Same except offset=MAX and set current file position = 2*MAX
read(fd, buffer, MAX);
Same except offset=2*MAX and set current file position = 3*MAX
close(fd);
Just need to clean up local structures
Free descriptor “fd” in open file table 126

(No need to talk to server)

N FS server failures

e server crashes / restarts, knowing nothing about clients
e because most client requests are idempotent
e |ookups, reads don’t change server state
e writes contain data and exact offset to write to
e client handles all timeouts in the same way

Case 1: Request Lost
Client Server
[send request] \>X

(no mesg)

Case 3: Reply lost on way back from Server

Client Server
[send request]
\ [recv request]
[handle request]
— [send reply]
X 127

N FS performance

e client-side caching
* read file data (and metadata) cached by client
e all good unless the file changes on the server
e client-side write buffers
e coalescing
e aggregating disparate messages
e writes sent back to server asynchronously (but before close())

e However : cache consistency!

128

N FS cache consistency

Problems:
e update visibility
« C, writes foo.c, but does not immediately push to server
« C,reads, sees old version
« C, flushes to server
e stale cache
« (, closes and reads again, sees old version (foo . c locally cached)
Fixes:
e close-to-open consistency
e every open guaranteed to see every prior write to the server

e must validate cache (GETATTR)
e but maybe not all the time

NFS consistency is weak... (so are most other FSs) 26

N FS server caching

e tons of memory
e wants to use it for disk cache (satisfy reads)
e wants to use it for write buffer (quickly ack writes)
e what could go wrong?

e server could ack a write before writing to disk!
e say file initially has three 4k blocks of data:

):9.9:9.9.9.9.9.9:9.9.9:9.9.9:9.9.9.9.9.9.9.9.9:9.9.9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.4

YY
ZZZZ2ZZ2Z22Z2222Z2Z2Z2222Z2Z2222Z2Z2222Z2Z2Z2222Z222222Z22227Z

e Client overwrites with:
write(aaa.., 0)., write(bbb.., 4k), write(ccc.., 8k):

e server crashes after acking second block, before writing:
dddddddaddadadddddaaddadddddaddaaddadaddadaadadaaaaadaaaaaa

YY <-—— OOpS
ccceceecececcecceceecceccecececececcececcececcccccceccccccece

e client never evens knows that the server crashed

130

N FS cache consistency

Problem: poor performance for client; the same file again
o fix: allow client; to cache data and attributes on client

« but when client; re-opens not guaranteed most recent version
e fix: have clients re-validate on open

e but slow
« fix: time out the cached attributes

e means data can all be cached, attributes sometimes validated
w/ server before accesses

« but when client; re-opens not guaranteed most recent version
(still)

non-fix; NFS consistency is weak... (same true for other FS'S)

131

N FS innovations

e stateless protocol
e minimizes state server needs to track
e server can crash and recover w/o clients being aware
e itempotent requests
e necessary for statelessness
e client treats network message drops, server failure the same
e client does not need to know which is which
e client and server buffering
e essential for performance
e cache consistency issues
e server flushes writes before acking
e client attribute cache times out
o VES interface
* makes application APl independent of underlying FS

132

N FS later versions

e version v3
* 064-bit sizes and offsets (large files)
e synchronous server writes
e readdirplus (reads dir, also includes the file handles)
e tcp
e version v4
e strong security (kerberos, public key protocols)
e performance improvements
» stateful protocol (mostly for file consistency)
e open standard (IETF)

133

Distributed Systems

e 48 - Communication Basics
e 49-NFS

e 50 - AFS

e Review

134

Andrew File System ars.i

e primary motivation was scale
e how many clients could a single server accommodate?
e user-visible behavior well-defined
e whole-file (not block) caching

TestAuth Test whether a file has changed
(used to validate cached entries)
GetFileStat Get the stat info for a file

Fetch Fetch the contents of file

Store Store this file on the server
SetFileStat Set the stat info for a file
ListDir List the contents of a directory

Figure 50.1: AFSv1 Protocol Highlights

135

Andrew File System ars .z

e Problems w/ v1:;
o full path traversal costs (on the serverl)
e client issues too many TestAuth msgs
e also:
e |oad not balanced across servers (fix using volumes)
e server has a process per client (fix using threads)
e |mproving the protocol:
o client callbacks:
e promise from the server to notify client if cached file changed
 file identifier (FID)
e volume id
o fileid
e “uniquifier” (usually called epochs elsewhere)

136

Client (C,) Server

fd = open(“/home/remzi/notes.txt”, ...);

Send Fetch (home FID, “remzi”)
Receive Fetch request

look for remzi in home dir

establish callback(C;) on remzi
exam ,O/ e return remzi’s content and FID
Receive Fetch reply

write remzi to local disk cache
record callback status of remzi
Send Fetch (remzi FID, “notes.txt”)
Receive Fetch request
look for notes.txt in remzi dir
establish callback(C;) on notes.txt

return notes.txt’s content and FID
Receive Fetch reply

write notes.txt to local disk cache
record callback status of notes.txt
local open () of cached notes.txt
return file descriptor to application

read(fd, buffer, MAX);
perform local read () on cached copy

close(fd);
dolocal close () on cached copy
if file has changed, flush to server

fd = open(“/home/remzi/notes.txt”, ...);
Foreach dir (home, remzi)
if (callback(dir) == VALID)
use local copy for lookup(dir)
else
Fetch (as above)
if (callback(notes.txt) == VALID)
open local cached copy
return file descriptor to it
else
Fetch (as above) then open and return fd

Aﬂdl’eW F||e SyStem cache consistency

Mentioned two issues w/ NFS:
e update visibility

e when will server be updated w/ client write?
e cache staleness:

e when will clients be informed their versions are out of date?

o AFS procedure:

e client writes, possibly many times
e closes

* writes complete file back to server, becomes visible
* server breaks callback

= contact each server w/ a callback and invalidate its copy

all apps on single machine see same copy 138

Aﬂdl’eW F||e SyStem cache consistency

Client; Client2 Server Comments
P; P2 Cache| P3 Cache| Disk
open(F) - - - File created
write(A) A - -
close() A - A
open(F) A - A
read) > A A - A
close() A - A
open(F) A - A
write(B) B - A
open(F) B - A Local processes
read() B B - A see writes immediately
close() B - A
B open(F) A A Remote processes
B read) > A A A do not see writes...
B close() A A
close() B y. ¢ B ... until close()
B open(F) B B has taken place
B read() =B B B
B close() B B
B open(F) B B
open(F) B B B
write(D) D B B
D write(C) C B
D close() C C
close() D ¢ D
D open(F) D D Unfortunately for P3
D read) - D D D the last writer wins
D close() D D

139

Aﬂdl’eW F||e SyStem cache consistency

e AFS provides also close-to-open consistency
» whole-file caching and updating
e never see concurrent writes diff clients in same version of a
file
e “last writer wins” (really last closer wins)
e Crash recovery complicated

e crashing client might miss callback (client treats cache as
suspect after crash)

e crashing server loses callbacks table
e server might inform all clients after recovery
e or clients constantly check for server liveness w/ heartbeats

e there is a cost to building a more sensible and scalable
caching model

140

NFS vs AFS

e primarily differ in caching

e \What to cache?
e NFS caches blocks
e AFS entire files (on disk)

* When to push writes to server?
e Loosely defined for NFS:

= any time from right away, to when file is closed
(only modified blocks)

e [f any part modified, AFS pushes entire file at close ()

e Final contents after concurrent merges by different clients:
o NFS: writes by the different clients might be intermingled
e AFS: final version reflects the last write; other write is lost

141

Exam 2 review

e exam topics:
o disk performance: perf from latencies
o disk scheduling: SSTF, CSCAN, SCAN
 RAIDO, 1,5
e FFS: advantages, write order
e journaling, meta-data journaling
e SSDS: simple mapping table, hybrid mapping table,
e end-to-end argument
e LFS: structure, write cost calculations
 NFS and AFS: structure, cache consistency
e what to review
e Quizzes 7-10
e l|ectures after spring break

142

R_l 7 review

Q1

5 Points

Given disk:

* 6000 RPM

* 200 sectors/track

* sector is 8KB

* avg. seek time 2 msec

¢ read/write no difference

* no track caching

Write only a number in each of the boxes for this
question: no explanation, no units, no nothing.

Q1.1
1 Point

In msecs, what is the average rotational latency?

5

Explanation

6000 RPM => 100/sec = 10 msec per rotation.
Average latency would be half of this, i.e. 5
msecs.

Q1.2
1 Point

In msecs, what is the average sector transfer time?

0.05

Explanation

10 msec/rot, 1/200th of a rotation

Q1.3
1 Point

In msecs, what is the average cost of a random 4k
read?

7.05

Explanation

= seek + latency, ationar + transfersector
=245+ 0.05 = 7.05 msec

you have to read an entire sector

RH 7 review

Q1.5

1 Point

In msecs, what would be the minimum
expected cost of reading 10 sequentially
ordered sectors?

7.5

Explanation

The minimum expected would be if
they were all laid out in the same
track, so we only pay seek time and
rotational latency once. After that we
just pay the transfer time for the rest
of the sectors.

7.05+ 9 % 0.05 = 7.5 msec

RH 8 review

Q2

5 Points

List the writes that should occur when creating a 100-
byte file bar.c in the directory /foo for a generic,
non-journaling file system, in a correct order (there
may be more than one):

Explanation

write data block bitmap (async)
write bar.c data (async)

write inode bitmap (async)
write bar.c inode

write /foo data

write /oo inode

Q3

5 Points

Instead, how many disk writes would a log-
structured file system ideally issue?

(enter just an integer)

done 4/16

