
● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS

146

Distributed Systems

RH 9 review

RH 9 review

149

RH 10 review

150

also

RH 10 review

RH 10

151

RH 10

152

RH 10

153

Google File System v1

● Needs
● need to handle massive files
● most mutations are appends
● co-design w/ applications (also an advantage)

● Assumptions
● built from hundreds, or thousands, of cheap machines
● failures are the common case

● Features
● relaxed consistency (also an advantage)
● atomic record append (without locking)
● no data caches

● append-only model means re-use not common
● host operating system does limited caching anyway

154

● multiple chunk servers
● hold fixed size chunks
● immutable once written
● identified by a globally unique 64-bit ID

● coordinator (GFS master)
● single machine holds all metadata in memory

● persistent
▪ file and chunk namespaces (think directories)
▪ mappings from files to chunks
▪ persistent by flushing operations log locally, remotely before visible

● soft state
▪ locations of chunk replicas
▪ on startup or recovery restore by asking chunkservers

● total state is 64 bytes for each 64MB chunk
● background garbage collection, replica reassignment and balancing

155

GFS two types of nodes

156

GFS architecture, and read

GFS pipelined writes

157

● startup and recovery treated identically:
● master polls all chunkservers for chunks they cache
● read namespace info from locally persistent state

● other
● master has shadows that are “almost” up to date
● chunkservers can flush to disk asynchronously because of

replication

158

GFS reliability

● update consistency
● file namespace mutations are atomic (handled by master)
● state of a file region after append can be:

● consistent if clients all guaranteed to see same data
● defined if consistent and last mutation correct not interleaved

● concurrent updates may leave system undefined, but consistent
● all see same data, but may be mingled fragments of updates
● usually when large writes broken into fragments
● enough information for application library to fix

● confusing
● cache consistency

● no caches

159

GFS consistency model

During Recovery

160

Queries to chunkserver

Chunkserver state

● System for:
● very large files (logs, like for web indexing)
● very large writes
● reads usually sequential through whole log

● Replication approach:
● single master
● multiple chunkservers
● very simple consistency and recovery
● single master only involved in lookups, not read or write

● Long-term view:
● single master was a mistake

161

GFS summary

yes it’s on the exam

