Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50-AFS

e GFS

146

RH 9 review

Q5

1 Point
Q4) During creation of file f in directory d, the following
1 Foint log order would be appropriate for LFS:
During creation of file f in directory d, the following [0 datag < inodeg < datas < inodey

write ordering would be appropriate for FFS:
[J datag < datay < inodeg < inodef

[J datag < inodegq < datay < inodey
datay < inodey < datag < inodegq

[J datag < datay < inodeq < inodey
datay < dataqg < inodey < inodeq

datay < inodes < datag < inodeq

Explanation
[J datay < datag < inodes < inodeq Both the last two options are correct, as neither
writes pointers to the log before they can be
accessed. The goal is to never allow a pointer to
_ become visible before the data that the pointer
Explanation specifies is completely initialized.

The order of the synchronized writes must be:

inodey < dataq < inodeg. In this LFS example, nothing of the other
Only the third choice meets this criteria. NGRS AL RS AL e (uEn el B2
visible. Therefore, as long as inodey is written
last, the ordering of the other writes is
irrelevant.

RH 9 review

Q11

1 Point

If we assume blocks have checksums stored with
them on disk, how can file systems detect when the
wrong logical block is returned? (i.e., the system
misdirected another write).

Q9 g

3 Points

How is an SSD like a log?

Explanation

The system erases blocks asynchronously, and
logically orders them on the front of the “log”.
New writes go into the next available page in the
log, so all new writes go sequentially into the
“log".

Explanation
Include the physical block number / sector in the
data to be checksummed.

RH 10 review

Q1

1 Point

How does a sender in a reliable protocol distinguish
between the following two cases?

Sender Receiver
[send message; > ;
keep copy; —» [receive message]

set timer] % [send ack]

(waiting for ack)

[timer goes off;

set timer/retry] \
[receive message]
[send ack]
[receive ack; 4,_//’

delete copy/timer off]
and

Sender Receiver

[send message; \>X
keep copy;

set timer]
(waiting for ack)

[timer goes off;

set timer/retry] \
[receive message]
[send ack]
[receive ack; 4._//

delete copy/timer off]

O acks
O retries
O sequence numbers

@ it doesn't

Q2

1 Point

Why is it important that sequence numbers increase
monotonically?

to identify lost packets
to identify duplicate packets

to reduce state overhead

Q3

1 Point

A programmer defining a new RPC protocol, and app
with which to use it, is responsible for defining which
software bits?

interface definition

calling the RPC

[J creating and wiring in the client stub
[J creating and wiring in the server stub

defining the remote procedure

149

RH 10 review

Q8

1 Point

Assume two NFS v2 clients are reading and
modifying the file :oo, initially containing blocks w/
contents A, B, C, and D (each letter defines an entire
block of data). The following sequence of operations
occurs:

Q5

* client, reads foo 1 Point

* client; overwrites B, Cw/ X, Y
* client, reads foo

o clients overwrites C, Dw/1, | O sequence numbers
* client, closes foo @ timeouts

* client, closes foo

How do NFS v2 clients detect server failures?

@® they don't
What are the final contents of the file? (Note that

there are two possiblities, choose either)
OAB,CD

@A X]I)

OAXY,) «—also

OAB,Y,]

150

RH 10

Q11

1 Point

Assume two AFS clients are reading and modifying
the file oo, initially containing blocks w/ contents A,
B, C, and D (each letter defines an entire block of
data). The following sequence of operations occurs:

e client; reads foo

e client; overwrites B, Cw/ X, Y
e client, reads foo

e clienty overwrites C, Dw/ 1, |
e client, closes foo

* client; closes foo

What is the final contents of the file?
OAB,CD

@A XY, D

OAXILD

OAB,IL)

151

RH 10

Q11

1 Point

Assume two AFS clients are reading and modifying
the file foo, initially containing blocks w/ contents A,
B, C, and D (each letter defines an entire block of
data). The following sequence of operations occurs:

client; reads foo
client; overwrites B, Cw/ X, Y

client, reads foo
client, overwrites C, Dw/ 1,]
client, closes foo

e client; closes foo

What is the final contents of the file?
OAB,CD

OAXY,D

OAXILD

@A B,IL)

152

RH 10

Q11

1 Point

Assume two AFS clients are reading and modifying
the file foo, initially containing blocks w/ contents A,
B, C, and D (each letter defines an entire block of
data). The following sequence of operations occurs:

client; reads foo
client; overwrites B, Cw/ X, Y

client, reads foo
client, overwrites C, Dw/ 1,]
client, closes foo

e client; closes foo

What is the final contents of the file?
OAB,CD

OAXY,D

OAXILD

@A B,IL)

153

Google File System

e Needs
e need to handle massive files
e mMost mutations are appends
e Cco-design w/ applications (also an advantage)
e Assumptions
e bullt from hundreds, or thousands, of cheap machines
e failures are the common case
e [eatures
e relaxed consistency (also an advantage)
e atomic record append (without locking)
e NO data caches
e append-only model means re-use not common
e host operating system does limited caching anyway

154

G FS two types of nodes

e multiple chunk servers

hold fixed size chunks

Immutable once written

identified by a globally unique 64-bit ID

e coordinator (GFS master)

single machine holds all metadata in memory

persistent

= file and chunk namespaces (think directories)

= mappings from files to chunks

= persistent by flushing operations log locally, remotely before visible
soft state

= |ocations of chunk replicas

= On startup or recovery restore by asking chunkservers

total state is 64 bytes for each 64MB chunk

background garbage collection, replica reassignment and balancing

155

G I:S architecture,

Application

(file name, chunk index)

GFS client

Y

-
-

(

(chunk handle,
chunk locations)

chunk handle, byte range)

mmm) Data messages
Control messages

chunk data

Linux file system

Linux file system

99 -

99 -

and read
GFS master = /foo/bar
File namespace " chunk 2ef0
Legend:

\ i 1 .

Instructions to chunkserver

I Chunkserver state v
m GFS chunkserver GFS chunkserver

156

GFS

pipelined writes

4 step 1
| Client | Master
13
Secondary ——
Replica A
ep l1ca ¢
l Primary '
"1 Replica ;
l Legend
6 Control
Secondary —_—)
ReplicaB (=———

157

G I:S reliability

e startup and recovery treated identically:
e master polls all chunkservers for chunks they cache
e read namespace info from locally persistent state

e Other
e master has shadows that are “almost” up to date

e chunkservers can flush to disk asynchronously because of
replication

158

G I:S consistency model

e Update consistency
e file namespace mutations are atomic (handled by master)
e state of a file region after append can be:
e consistentif clients all guaranteed to see same data
e (Jdefined if consistent and /last mutation correct not interleaved
e concurrent updates may leave system undefined, but consistent
e all see same data, but may be mingled fragments of updates
e usually when large writes broken into fragments
e enough information for application library to fix
e confusing
e cache consistency
e nNO caches

159

During Recovery

GFS master = /foo/bar
File namespace chunk 2¢f0

/
/
f
’
/
/
/
’
7/
7/
\/ ,
7

Queries to chunkserver

Chunkserver state

GFS chunkserver GFS chunkserver

Linux file system Linux file system

B9 - B9 -

160

G FS summary

e System for:

e very large files (logs, like for web indexing)

e very large writes

e reads usually sequential through whole log
e Replication approach:

e single master

e multiple chunkservers

e very simple consistency and recovery

e single master only involved in lookups, not read or write
e [ong-term view:

e single master was a mistake

yes it’s on the exam 161

