
Virtual Machines

Adapted from Silberschatz, Galvin and Gagne, Copyright 2018

Virtual Machines
● Overview
● History
● Benefits / Features
● Building Blocks
● Implementations
● Virtualization and Operating System Components
● Examples

2

Key Ideas
● User only knows and uses what the interface allows
● System may support different users, with different

interfaces

3

linux
m

ac osx
w

indoz

4

● Fundamental idea

“abstract hardware for different execution environments”

● Several components
● Host – underlying hardware system
● Virtual machine manager (VMM) or hypervisor – creates

and runs virtual machines by providing interface that is
identical to the host
● Except for paravirtualization

● Guest – process provided with virtual copy of the host
● Usually, an operating system

● Single physical machine can run multiple operating
systems concurrently, each in its own virtual machine

Overview

System Model

5

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

 Non-virtual machine Virtual machine

VMM Implementation
● Vary greatly, with options including:

● Type 0 hypervisors
● all hardware via firmware
● could provide dedicated CPUS, memory, I/O for each
● IBM LPARs and Oracle LDOMs are examples

● Type 1 hypervisors
● runs on bare metal
● OS-like software built to provide virtualization
● VMware ESX, Joyent SmartOS, and Citrix XenServer
● includes general-purpose operating systems that provide standard

functions as well as VMM functions
▪ Microsoft Windows Server / HyperV, RedHat Linux with KVM

● Type 2 hypervisors
● Applications that run on standard operating systems but provide VMM

features to guest operating systems
● VMware Workstation and Fusion, Parallels Desktop, Oracle VirtualBox,

QEMU
6

7

● Other variations include:
● Paravirtualization - Guest operating system is modified to work in

cooperation with the VMM to optimize performance
● Programming-environment virtualization - VMMs do not virtualize

real hardware but instead create an optimized virtual system
● Used by Oracle Java and Microsoft.Net

● Emulators – Allow applications written for one hardware
environment to run on a very different hardware environment, such
as a different type of CPU

● Application containment - Not virtualization at all but rather
provides virtualization-like features by segregating applications
from the operating system, making them more secure,
manageable
● Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs

● Much variation due to breadth, depth and importance of
virtualization in modern computing

VMM Implementation cont…

Benefits
● Host protected from VMs, VMs protected from each other

● viruses less likely to spread
● sharing is provided via shared file system volume, network

● Freeze, suspend, running VM
● Move, copy somewhere else and resume
● Snapshot and restore back to that state
● Clone by creating copy and running both original and copy

● Great for OS research
● better system development efficiency

● Run multiple, different OSes on a single machine
● Consolidation, app dev, …

8

Benefits cont…

● Templating
● create an OS + application VM, provide it to customers,

use it to create multiple instances of that combination
● Live migration –

● move a running VM from one host to another!
● no interruption of user access

● All those features taken together cloud computing
● Using APIs, programs tell cloud infrastructure (servers,

networking, storage) to create new guests, VMs, virtual
desktops

⟹

9

Building Block - Trap and Emulate
● Dual mode CPU means guest executes in user mode

● Kernel runs in kernel mode
● Not safe to let guest kernel run in kernel mode
● VM needs two modes:

● virtual user mode
● virtual kernel mode
● both run in real user mode

● How does switch from virtual user mode to virtual kernel mode occur?
● Attempting a privileged instruction in user mode causes an error -> trap
● VMM gains control, analyzes error, executes operation as attempted by guest
● Returns control to guest in user mode
● Known as trap-and-emulate

● Guest user mode code in runs at same speed
● kernel mode privileged code runs slower
● especially a problem with multiple guests

● CPUs adding hardware support mode
● more modes improves virtualization performance

10

Trap-and-Emulate implementation

11

Building Block need for binary Translation

● Some CPUs blur line between privileged and non-privileged
● Earlier Intel x86 CPUs are among them

● Earliest Intel CPU designed for a calculator
● Backward compatibility means difficult to improve
● Consider Intel x86 popf instruction

● Loads CPU flags register from contents of the stack
● CPU in privileged mode all flags replaced
● CPU in user mode only some flags replaced
▪ No trap generated

● Other special instructions as well

Binary translation…

⇒
⇒

12

Binary translation to the rescue
● Binary translation

● Basics are simple, but implementation complex
● If guest VCPU is in user mode, guest runs instructions natively
● If guest VCPU in kernel mode

● VMM examines every instruction guest is about to execute by reading a
few instructions ahead of program counter

● Non-special-instructions run natively
● Special instructions translated into new set of instructions that perform

equivalent task (for example changing the flags in the VCPU)
● Implemented by translation of code within VMM

● Code reads native instructions dynamically from guest, on demand,
generates native binary code that executes in place of original code

● Performance of this method would be poor without optimizations
● Products like VMware use caching:

● Translate once, cache, and reuse when guest executes code again
● Testing showed booting Windows XP as guest caused 950,000

translations, at 3 microseconds each, or 3 second (5 %) slowdown over
native (obviously an old data point)

13

Binary Translation implementation

14

Nested Page Tables NPTs

● How can VMM keep page-table state for guests?
● Each guest maintains page tables to translate virtual to

physical addresses
● VMM maintains per-guest NPTs
● When guest OS tries to change page tables:

● VMM makes equivalent change to NPTs and its own
page tables

● Can cause many more TLB misses
● potentially large performance impact

15

Hardware Assistance
● All virtualization needs some HW support

● More support more features, stability, performance
● Intel added VT-x instructions in 2005 and AMD the AMD-V

instructions in 2006
● CPUs with these instructions remove need for binary translation
● define more CPU modes – “guest” and “host”
● VMM can enable host mode, define characteristics of each guest

VM, switch to guest mode and guest(s) on CPU(s)
● In guest mode, guest OS thinks it is running natively, sees devices

(as defined by VMM for that guest)
● Access to virtualized device, priv instructions cause trap to VMM
● CPU maintains VCPU, context switches it as needed

● HW continues to improve
● support for Nested Page Tables
● DMA
● interrupts

⇒

16

Nested Page Tables

17

Similar acronym: page modification logging (PML) is a hardware
feature that tracks modified memory pages of VMs

Paravirtualization guest OS knows the matrix is real

● Not really virtualization
● VMM provides an abstraction of hardware
● Guest is modified to account for the virtualization layers

● increased performance
● less need for hardware support

● Xen techniques:
● Clean and simple device abstractions, leads to:

● Efficient I/O
● Good communication between guest and VMM for I/O
● Each device has circular buffer shared by guests and VMM

via shared memory

18

Paravirtualization not exact duplicate of hardware

19
Xen I/O via shared circular buffer

Xen cont.
● More Xen techniques:

● Memory management does not include nested page tables
● Each guest has own read-only tables
● Guest uses hypercall (call to hypervisor) when page-

table changes are needed

● Paravirtualization allowed virtualization of older x86
CPUs (and others) without binary translation
● Guest had to be modified to run on paravirtualized VMM

● On modern CPUs Xen doesn’t require guest modification
● not paravirtualization any more

20

Types of VMs application containment
● Some goals of virtualization are:

● segregation of apps
● performance and resource management
● easy start, stop, move
● management

● Can do those things without full-fledged virtualization
● If applications compiled for the host operating system, don’t need full

virtualization to meet these goals
● Docker containers create virtual layer between OS and apps

● only one kernel running – host OS
● container only has application layer of OS
● OS and devices are virtualized
● Container have their own:

● applications
● networking stack, addresses, and ports
● runtime systems
● user accounts, etc. 21

Much research ongoing both industry and academia

● basic tech used by cloud providers

22

2021

