
● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS
● Fault Tolerance

1

Distributed Systems

2

Distributed GFS GFS master

3

Distributed GFS GFS master

consensus group

consensus group is fault-tolerant; any one of the three can fail
without halting the entire system

Fault Tolerance dependability

● A component provides services to clients.
● To provide services, the component may require the services

from other components ⇒ a component may depend on
some other component.

● Specifically:
● A component C depends on C∗ if the correctness of C’s

behavior depends on the correctness of C∗’s behavior.
(Components are processes or channels.)

4

Requirement Description

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easy can a failed system be repaired

● Reliability R(t) of component C
● Conditional probability that C has been functioning correctly

during [0, t) given C was functioning correctly at time T = 0.
● Traditional metrics:

● Mean Time To Failure (MTTF):
● average time until a component fails.

● Mean Time To Repair (MTTR):
● average time needed to repair a component.

● Mean Time Between Failures (MTBF)
● Simply MTTF + MTTR.

5

Fault Tolerance basics

Reliability vs Availability
Availability A(t) of component C:
● Average fraction of time that C has been up-and-running in

interval [0, t).
● Long-term availability A: A(∞)

● Note:

● Reliability and availability make sense only if we have an
accurate notion of what a failure actually is….

A = MTTF
MTBF

= MTTF
MTTF+MTTR

6

Terminology

X

Term Description Example

Failure A component is not living
up to its specifications

Crashed program

Error Part of a component that
can lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer

Handling Faults

7

Term Description Example
Fault prevention Prevent the occurrence of a

fault
Don’t hire sloppy
programmers

Fault tolerance Build a component such that it
can mask the occurrence of a
fault

Build each component by two
independent programmers

Fault removal Reduce the presence, number,
or seriousness of a fault

Get rid of sloppy
programmers

Fault forecasting Estimate current presence,
future incidence, and
consequences of faults

Estimate how a recruiter is
doing when it comes to hiring
sloppy programmers

Failure Models

8

Type Description of server’s behavior
Crash failure Halts, but is working correctly until it halts (fail stop)
Omission failure

receive omission
send omission

Fails to respond to incoming requests
Fails to receive incoming messages Fails to send
messages

Timing failure Response lies outside a specified time interval
Response failure

Value failure
State-transition failure

Response is incorrect
The value of the response is wrong
Deviates from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary times

Dependability vs Security
Omission versus commission
Arbitrary failures are sometimes called malicious. It is better to
make the following distinction:
● Omission failures: a component fails to take an action that it

should have taken
● Commission failures: a component takes an action that it

should not have taken

Observation
Deliberate failures, be they omission or commission failures, are
typically security problems. Distinguishing between deliberate
failures and unintentional ones is, in general, impossible.

9

Halting Failures
Scenario
C no longer perceives any activity from C∗ — a halting failure?
Distinguishing between a crash or omission/timing failure is difficult to
impossible.

Asynchronous versus synchronous systems
● Asynchronous system: no assumptions about process execution

speeds or message delivery times → cannot reliably detect crash
failures.

● Synchronous system: process execution speeds and message delivery
times are bounded → we can reliably detect omission and timing failures.

● In practice we have partially synchronous systems: most of the time,
we can assume the system to be synchronous, yet there is no bound on
the time that a system is asynchronous → can normally reliably detect
crash failures.

10

Halting Failures

X

Halting type Description

Fail-stop Crash failures, but reliably detectable

Fail-noisy Crash failures, eventually reliably detectable

Fail-silent Omission or crash failures: clients cannot tell what
went wrong

Fail-safe Arbitrary, yet benign failures (i.e., they cannot do any
harm)

Fail-arbitrary Arbitrary, with malicious failures

Process Resilience

11

Basic idea
Protect against malfunctioning processes through process replication,
organizing multiple processes into a process group. Distinguish
between flat groups and hierarchical groups.

Groups and Failure Masking
k -fault tolerant group
When a group can mask any k concurrent member failures (k is called degree of
fault tolerance).
How large does a k -fault tolerant group need to be?
● With halting failures (crash/omission/timing failures): we need a total of k + 1

members as no member will produce an incorrect result, so the result of one
member is good enough. If k fail silently, the answer of the other can be used.

● With arbitrary failures: we need 2k + 1 members so that the correct result can
be obtained through a majority vote. Up to k could be malicious (lie, prevaricate),
so we need k+1 who agree to reach consensus. If at most fail, there should be
n+1 correct servers left.

Important assumptions:
● All members are identical
● All members process commands in the same order

Result: We can now be sure that all non-malicious processes do exactly the same
thing.

12

Consensus
Prerequisite
In a fault-tolerant process group, each nonfaulty process commits
the same commands, and in the same order, as every other
nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which
command to commit next.

13

Motivating Paxos by looking at consensus

Assumptions (rather weak ones, and realistic)
● System is partially synchronous (may even be asynchronous).
● Communication between processes may be unreliable:

● messages may be lost, duplicated, or reordered.
● Corrupted messages can be detected

● and thus subsequently ignored
● All values are deterministic:

● once an execution is started, it is known exactly what it will do.
● Processes may exhibit crash failures, but not arbitrary failures.
● Processes do not collude.

Understanding Paxos
● We will build up to Paxos by looking at problems that occur.

14

Two Servers leader + backup

15

● The leader sends an accept message ACCEPT(o,t) to backups
when assigning a timestamp t to command o.

Two Servers and a crash!

16

Problem
Servers have diverged because primary crashes after executing
an value, but the backup never received the accept message.

