
Motivating Paxos by looking at consensus

Assumptions (rather weak ones, and realistic)
● System is partially synchronous (may even be asynchronous).
● Communication between processes may be unreliable:

● messages may be lost, duplicated, or reordered.
● Corrupted messages can be detected

● and thus subsequently ignored
● All values are deterministic:

● once an execution is started, it is known exactly what it will do.
● Processes may exhibit crash failures, but not arbitrary failures.
● Processes do not collude.

Understanding Paxos
● We will build up to Paxos by looking at problems that occur.

14

Two Servers leader + backup

15

● The leader sends an accept message ACCEPT(o,t) to backups
when assigning a timestamp t to command o.

Two Servers and a crash!

16

Problem
Servers have diverged because primary crashes after executing
an value, but the backup never received the accept message.

Solution
● A backup responds by sending a learn message: LEARN(o,t)
● When the leader notices that value o has not yet been learned, it

retransmits ACCEPT(o,t) with the original timestamp.

Never commit an value before it is clear that is has been learned.
17

Two Servers and a solution to the crash

Three servers and two crashes: still a problem?

Scenario:
● Assume reliable fault detection.
● S1 is waiting for a majority before committing (and gets it when it hears from S2)
● But if S1, S2 crash there is no guarantee S3 knows anything…… and S3 commits o2… bad!
One possible solution:
● No server should commit until it gets learns from all non-failed servers.
● However, this is a high bar, and reliable fault detection is impossible, so need something else. 18

S3 can commit because it knows
S1 and S2 have failed. Sadly, it
does not know about o1

Fundamental Rule
Another approach: a server S cannot commit an value o until it has received a
LEARN(o) from a majority of learners.

Practice
Reliable failure detection is practically impossible. A solution is to set timeouts, but
accept that a detected failure may be false.

S1, S2 opposite sides of a partition
Each think the other has crashed. Who’s the real leader? (neither)

Majorities to commit values necessary:
Any two majorities are guaranteed to intersect - intersection property
guarantees knowledge of past commits is never lost. 19

So Consensus Needs at Least Three Servers
Adapted fundamental rule
● With three servers, a server S cannot commit an value o until it has received

at least one (other) LEARN(o) message, so that it knows that a majority of
servers will commit o.

Assumptions before taking the next steps:
● Initially, S1 is the leader.
● A server can reliably detect it has missed a message, and recover from

that miss (timestamps, message IDs, ask for resends, etc.).
● When a new leader needs to be elected, the remaining servers follow a

strictly deterministic algorithm, such as S1 → S2 → S3 .
● A client cannot be asked to help the servers to resolve a situation.

Observation:
If either one of the backups (S2 or S3) crashes, consensus still correct:
● values at nonfaulty servers are committed in the same order.

20

Example Failures w/ correct recovery

Leader crashes after executing o1

S3 is completely ignorant of any activity by S1

S2 received ACCEPT(o1, 1), detects crash, and becomes leader. S3 never
received ACCEPT(o1, 1)
If S2 sends ACCEPT(o2 , 2), S3 sees unexpected timestamp and tells
S2 that it missed timestamp 1. S2 retransmits ACCEPT(o1, 1), allowing S3
to catch up.

S2 missed ACCEPT(o1, 1)
S2 detects crash and becomes new leader
If S2 sends ACCEPT(o1, 1) ⇒ S3 retransmits LEARN(o1).
If S2 sends ACCEPT(o2 , 1) ⇒ S3 tells S2 that it apparently missed
ACCEPT(o1, 1) from S1, so that S2 can catch up.

21

Example Failures
Leader crashes after sending ACCEPT(o1, 1):

S3 is completely ignorant of any activity by S1

As soon as S2 announces that o2 is to be accepted, S3 will notice that it missed an
value and can ask S2 to help recover.

S2 had missed ACCEPT(o1, 1)
As soon as S2 proposes an value, it will be using a stale timestamp, allowing S3 to
tell S2 that it missed value o1.

Observation
Consensus (with three servers) behaves correctly when a single server
crashes, regardless of when that crash took place.

22

False Crash Detections

Problem and solution
S3 receives ACCEPT(o1, 1), but much later than ACCEPT(o2 , 1). If it knew who
the current leader was, it could safely reject the delayed accept message
 ⇒ leaders should include their ID in messages.

23

1

But What About Progress?

Problem:
When S3 crashes no other server knows what it did

Essence of solution
When S2 takes over, it needs to make sure that any outstanding values initiated by S1 have been
properly flushed, i.e., committed by enough servers. This requires an explicit leadership takeover by
which other servers are informed before sending out new accept messages.

24

Terminology
● proposed value same as Steen’s operation
● value commit same as Steen’s execute

● accept / learn are second phase not first as we have seen

Paxos original “single decree” Paxos

● Server roles:
● proposer: attempts proposes client’s command
● acceptor: accepts a proposed command
● learner: learns of acceptances
● Once a server learns a majority have accepted a proposal,

it can be accepted and result sent to the client.
● All roles often played by each server

26
S1

S2

S3

C1 C2

Paxos phases

● A proposal has:
● timestamp, or “proposal number”, or “ID”
● value, “value”

● We want correctness and liveness, so:
● there can be concurrent proposals (by different servers)
● phase 1: arbitrate between competing proposals

● proposer sends a prepare msg w/ proposal number, n, and value
on, to each acceptor

● If the prepare’s n is higher than any previously seen proposal, an
acceptor promises to ignore later proposals with lower or same
numbers

● phase 2: decide on accepted value
● proposer sends accept w/ its timestamp, and value from previously

promise (or it’s own value if none)
● acceptors respond accepted, and tell all learners

proposer can time out and restart w/ higher proposal number
27

Paxos single proposer

28derived from wikipedia

● client sends proposal to random proposer
● proposer send prepare w/ bigger proposal number (ID) than previously seen
● acceptors:

● do not respond if already promised w/ ID >= 1, or
● respond with:

▪ promise not to accept proposal w/ ID <= 1
▪ value of highest proposal it has promised so far
▪ this promise returns null,null because it is the first seen prepare msg

● if majority promises, proposer sends accept with:
● ID and value from proposal w/ highest ID promised by an acceptor

● if learner gets accepted from majority of acceptors, proposal is committed

 Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request(Va)
 | X--------->|->|->| | | Prepare(1,Va)
 | |<---------X--X--X | | Promise(1,null,null)
 | X--------->|->|->| | | Accept!(1,Va)
 | |<---------X--X--x------>|->| Accepted(1,Va)
 |<---------------------------------X--X Response

● P1 fails, client request fails
● acceptors all append Va,1 to promises for proposal 2
● after gathering a majority, P2 sends accept with:

● new proposal ID of 2
● value Va from highest proposal promised by any acceptor

● P2 is accepted, but value committed is actually from the earlier proposal (Va from 1)

● single-decree Paxos can accept multiple proposals, but:
all accepted values must be the same

Paxos proposer (server leader) failure

29derived from wikipedia

 Clients Proposers Acceptor Learner
 C1 C2 P1 P2
 | | | | | | | | |
 X-------->| | | | | | | Request(Va)
 | | X--|--------->|->|->| | | Prepare(1,Va)
 | | FAIL!<-----------X--X--X | | Promise(1,null,null)

 | X------|->| | | | | | Request
 | | | X--------->|->|->| | | Prepare(2,Vb)
 | | | |<---------X--X--X | | Promise(2,Va,1)
 | | | X--------->|->|->| | | Accept!(2,Va)
 | | | |<---------X--X--x------>|->| Accepted(2,Va)
 | |<---------------------------------X--X Response

Dueling Proposers paxos

● progress not guaranteed…
derived from wikipedia

 Client Proposer Acceptor Learner
 X-|------|->| | | | | | !! NEW LEADER (knows last number was 1)
 | | | X--------->|->|->| | | Prepare(2,Vb)
 | | | |<---------X--X--X | | Promise(2,Va,1})

 | | | | | | | | | !! OLD LEADER continues, denied w/ ID 2
 | | X------------>|->|->| | | Prepare(2,Va)
 | | |<------------X--X--X | | Nack(2)

 | | | | | | | | | !! OLD LEADER tries 3
 | | X------------>|->|->| | | Prepare(3,Va)
 | | |<------------X--X--X | | Promise(3,Vb,2)

 | | | | | | | | | !! NEW LEADER tries accept, denied
 | | | X--------->|->|->| | | Accept(2,Va)
 | | | |<---------X--X--X | | Nack(3)

 | | | | | | | | | !! NEW LEADER tries 4
 | | | X--------->|->|->| | | Prepare(4,Vb)
 | | | |<---------X--X--X | | Promise(4,Va,3})

 | | | | | | | | | !! OLD LEADER proposes, denied
 | | X------------>|->|->| | | Accept(3,Vb)
 | | |<------------X--X--X | | Nack(4)
 | | | | | | | | | ... and so on ...

30

Multiple Single Decrees paxos

● each round takes two round trips (not counting client)
● first identifies a leader
● second gets value accepted

● maybe we can dispense w/ the first…

 Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request(Va)
 | X--------->|->|->| | | Prepare(1,Va)
 | |<---------X--X--X | | Promise(1,null,null)
 | X--------->|->|->| | | Accept!(1,Va)
 | |<---------X--X--x------>|->| Accepted(1,Va)
 |<---------------------------------X--X Response
__

 | | | | | | |
 X-------->| | | | | | Request(Vb)
 | X--------->|->|->| | | Prepare(1,Vb)
 | |<---------X--X--X | | Promise(1,null,null)
 | X--------->|->|->| | | Accept!(1,Vb)
 | |<---------X--X--x------>|->| Accepted(1,Vb)
 |<---------------------------------X--X Response

completely
separate

31

Multi-Paxos chasing performance

● stable leader allows one round per committed value
● competing leader starts everything all over

derived from wikipedia

 Multi-Paxos Collapsed Roles

 Client Servers
 | | | | --- First Request ---
 X-------->| | | Request(V0)
 | X->|->| Prepare(N,V0)
 | |<-X--X Promise(N})
 | X->|->| Accept!(N,0,V0)
 | X<>X<>X Accepted(N,0,V0)
 |<--------X | | Response

 X-------->| | | Request(V1)
 | X->|->| Accept!(N,1,V1)
 | X<>X<>X Accepted(N,1)
 |<--------X | | Response

 X-------->| | | Request(V2)
 | X->|->| Accept!(N, 2, V2)
 | X<>X<>X Accepted(N,2)
 |<--------X | | Response

multi-paxos implementations
usually do not change
accepted values (promise only
returns the proposal number)

32

