Operating Systems:
Processes and Threads

Shankar

February 10, 2022

Outline

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© O N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

User Perspective Overview

m Process: executing instance of a program

= Threads: active agents of a process

» Address space

= text segment: code
= data segment: global and static
= stack segment, one per thread

= Resources: open files and sockets

m Code: non-privileged instructions
= including syscalls to access OS services

m All threads execute concurrently

OS Kernel Overview

m Data structure: state of processes, user threads, kernel threads

m Process: address space, resources, user threads

» user thread: user-stack, kernel-stack, processor state
= mapping of content to hardware location (eg, memory, disk)

= memory vs disk (swapped out)
» user thread status: running, ready, waiting, mode

m Kernel thread: kernel-stack, processor state

m Schedulers:

= short-term: ready — running

= i0 device: waiting — io service — ready

= medium-term: ready/waiting <> swapped-out
long-term: start — ready

efficency and responsiveness

Outline

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© o N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Single-Threaded Process Process state

m PCB (process control block): one per process

holds enough state to resume the process

process id (pid)

processor state: gpr, ip, ps, sp, ...

address-space: text, data, user-stack, kernel-stack

= mapping to memory/disk

io state: open files/sockets, current positions, access, ...
accounting info: processor time, memory limits, ...

m Status

running: executing on a processor

ready (aka runnable): waiting for a processor

waiting: for a non-processor resource (eg, memory, io, ...)
swapped-out: holds no memory

Multi-Threaded Process Process state

m PCB (process control block): one per process

» address-space: text, data

= i0 state

= accounting info

= TCBs (thread control block): one per thread // user thread
= processor state
s user-stack, kernel-stack
= status: running, ready, waiting, ...

m Process swapped-out — all threads swapped out

m User thread:

= user-mode: executing user code, using user-stack
= kernel-mode: executing kernel code, using kernel-stack

Kernel threads Process state

m Threads belonging to the kernel

= asynchronous services: io, reaper, ...
= always in kernel-mode

m TCB (thread control block): one per kernel thread
= holds enough state to resume the thread
m processor state: gpr, ip, ps, Sp, .-
» kernel-stack // no user-stack
= status: running, ready, waiting

Process queues

m Kernel keeps PCBs/TCBs in queues

= new queue: processes to be started
= run queue
= ready (aka runnable) queue

= i0 queue(s)

= swapped-out queue

» terminated queue: processes to be cleaned up

m Transitions between queues

io completion / wakeup
admit
—>

dispatch

Process state

kill

medium-term scheduler

User-level Threads Process state

m Threads implemented entirely in user process
m Kernel is not aware of them
= kernel sees only one user thread

m User code maintains

= TCBs
= signal handlers (for timer/io/etc interrupts)
» dispatcher, scheduler

m OS provides low-level functions via which user process can

m get processor state
= dispatch processor state
= to/from environment variables

m User-level vs kernel-level

= Pro: application-specific scheduling
= Con: cannot exploit additional processors

Outline

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© O N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Approach 1: Create Process from Scratch Process creation

m CreateProcess(path, context):

read file from file system'’s path
acquire memory segments
unpack file into its segments
create PCB

update PCB with context

add PCB to ready queue

// GeekOS Spawn

// executable file
// code, data, stack(s), ...

// pid, ...

// user, directory, ...

m Drawback: context has a lot of parameters to set

Approach 2: Fork-Exec Process creation

m Fork(): creates a copy of the caller process
// returns 0 to child, and child’s pid to parent
» create a duplicate PCB
= except for pid, accounting, pending signals, timers,
outstanding io operations, memory locks, ...
= only one thread (the one that called fork)
= allocate memory and copy parent’s segments
= minimize overhead: copy-on-write; memory-map hardware
= add PCB to the ready queue

m Exec(path, ...): replaces all segments of executing process
n exec[elpv] variants: different ways to pass args, ...
= open files are inherited
= not inherited: pending signals, signal handlers, timers, memory
locks, ...
= environment variables are inherited except with exec[lv]e

Outline

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© o N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Zom bie Process termination

m Process A becomes a zombie when
= A executes relevant OS code (intentionally or o/w)

= exit syscall
= illegal op
s exceeds resource limits

= A gets kill signal from a (ancestor) process

m A is moved to terminated queue

m What happens to A's child process (if any)

= becomes a root process’s child (orphan) // Unix
= is terminated // VMS

Reap s mison.

m Process A in the termination queue is eventually reaped

= its memory is freed
m its parent is signalled (SIGCHILD)
= it waits for parent to do wait syscall

= parent gets exit status, accounting info, ...

Outline

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© O N o R W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

POSIX threads user threads

m thread create(thrd, func, arg)

= create a new user thread executing func(arg)
= return pointer to thread info in thrd

m thread yield():

= calling thread goes from running to ready
= scheduler will resume it later

m thread join(thrd):

» wait for thread thrd to finish
m return its exit code

m thread exit(rval):

m terminate caller thread, set caller’s exit code to rval
= if a thread is waiting to join, resume that thread

Outline Boot

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© O N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

OS initialization Boot

m Power-up:

= BIOS: disk boot sector — RAM reset address

m processor starts executing contents
m Boot-sector code:

= load kernel code from disk sectors to RAM, start executing
m Kernel initialization:

= identify hardware: memory size, io adaptors, ...

= partition memory: kernel, free, ...

= initialize structures: vm/mmap/io tables, pcb queues, ...
» start daemons: OS processes that run in the background

= idle
= io-servers
= login/shell process bound to console

= mount filesystem(s) in io device(s)

Outline Pipes

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© O N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Kernel file data structures

e Inode table: has a copy of the inode of every open
vertex (file or directory)
— may differ from the inode in the disk

e Open-file table: has an entry for every open call not
yet succeeded by a close call (across all processes)

Each entry holds:

— current file position, reference count (how many file
descriptors point to the entry), inode pointer, etc.

— Entry is removed when the reference count is 0

e For each process: a file descriptor table, mapping
integers to open-file table entries

© 2016 L. Herman & A. U. Shankar 398

Opening the same file twice

fd1l= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);

read(fd2, buffer, 1024);

file descriptor
table
(per process)

0
1
2
3
4

L

]

© 2016 L. Herman & A. U. Shankar

/position 0
ref. count 1 /
inode

open file table

position 1024
ref. count 1

inode

inode table

/
/ permissions 0666

size 50238
type regular file

20

Pipes

fd1= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);

After a fork()

read(fd2, buffer, 1024);

fork();

parent
FD| |
3

4
child

[P0
3
4

\

g

pr

open file table

position
ref.count 2 L~

—

inode
position 1024
ref.count 2
inode

© 2016 L. Herman & A. U. Shankar

permissions 0666

size

type

50238

regular file

400

Pipes

Opening a pipe
int pfd[2];
pipe(pfd);

open file table

m- / position n/a

0

ref. count 1 -

ermissions 0666

1 inode '// p.
2 size 0
3 " type pipe
4 position n/a

ref. count 1

inode

© 2016 L. Herman & A. U. Shankar 406

int pfd[2];
pipe(pfd);
fork();

After a fork()

parent

om
3

4

child

7’

S~
L~

© 2016 L. Herman & A. U. Shankar

open file table

position n/a
ref. count 2
inode

position n/a

ref. count 2

inode

Example pipe-

| inode table entry

permissions 0666
size 0
type pipe

example.c

407

Example: data transfer on pipe from parent to child Pipes

m Process, say A, creates pipe

m A forks, creating child process, say B

m A closes its read-end of pipe, writes to pipe

m B closes its write-end of pipe, reads from pipe

m byte stream: in-chunks need not equal out-chunks

m A blocks if buffer is full and B has not closed read-end

m B blocks if buffer is empty and A has not closed write-end

m read when no data and no writers (write-end has zero ref count):
= read returns 0
m write when no readers (read-end has zero ref count):

= writer process receives SIGPIPE signal
= write returns EPIPE

Outline Signals

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© 0 N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Signals: user perspective Signals

m Process-level interrupt with a small integer argument n (0..255)
m SIGKILL, SIGCHILD, SIGSTOP, SIGSEGV, SIGILL, SIGPIPE, ...

m Who can send a signal to a process P:

= another process (same user/ admin) // syscall kill(pid, n)
= kernel
m P itself

m When P gets a signal n, it executes a “signal handler”, say sh

= signal n is pending until P starts executing sh
» for each n, at most one signal n can be pending at P
= at any time, P can be executing at most one signal handler

m Each n has a default handler: ignore signal, terminate P, ...

m P can register handlers for some signals // syscall signal(sh, n)

= if so, P also registers a trampoline function,
which issues syscall complete handler

Signals: implementation Signals

m P’s pcb has
= pending bit for each n // true iff signal n pending
= ongoing bit // true iff any signal handler is being executed

m When P gets a signal n, kernel sets pending n.
Causes sh to execute at some point when P is not running

m When kernel-handled pending n and not ongoing:
= kernel sets ongoing, clears pending n, starts executing its sh
= when sh ends, kernel unsets ongoing.

m When user-handled pending n, not ongoing, and P in user mode:
= kernel sets ongoing, clears pending n,
saves P’s stack(s) somewhere and modifies them so that
= P will enter sh with argument n
= P will return from sh and enter trampoline
= when P returns to kernel (via complete handler),
kernel clears ongoing and restores P's stack(s)

Stacks when handling user-level signal (x86 style) Signals

userstack kernel stack
prior to resuming P in user mode, signal n pending
ustacke istated g ¢ateo: interrupt state of process P
usp@ - usp@: top of user stack
prior to resuming P at sh in user mode
ustacke istate] - istatel: istate@ with eip < sh
n . usp1 - uspl: usp@ — sizeof(n, &trampoline)
trampoline
just after executing syscall complete_handler
ustack®o istate2
n usp?2
just prior to resuming P at istate®
ustack®o istate0

- istate® and usp@ restored
uspo

Outline Sockets

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© O N o R W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Internet Streaming Sockets Sockets

m Two-way data path: client process <> server process

m Server:

m s < socket (INET, STREAMING) // get a socket
bind(ss, server port)
client addr:port < accept(ss)

= send(ss, data) // byte stream
= data < recv(ss) // byte stream
= close(ss) // returns when remote also closes
m Client
m sC < socket (INET, STREAMING) // get a socket
w status < connect(sc, server addr:port) // returns sucess or fail
= send(sc, data) // byte stream
= data « recv(sc) // byte stream

close(sc)

client tcp socket

A x1 ip addr, tcp port]
connect(x2)
open é:p opening handsha%
send(data)

recv
data

tcp data transfer

<cp closing handshak>

tcp socket server
x2 B

ﬂﬂ)

___accept()

open to x1
_

recv()
data

close()

Sockets

Outline

Overview

Process State

Process Creation

Process Termination

User-Threads Management

Booting the OS

Inter-Process Communication: Pipes

Inter-Process Communication: Signals

© o N oA W=

. Inter-Process Communication: Internet Sockets
10. Schedulers

Schedulers Scheduler

io completion / wakeup

medium-term scheduler

m Short-term (milliseconds) : ready — running
= high utilization: fraction of time processor doing useful work
» low wait-time: time spent in ready queue per process
= fairness / responsiveness: wait-time vs processor time

@ admit
—

dispatch

m Medium-term (seconds): ready/waiting <> swapped-out
= avoid bottleneck processor/device (eg, thrashing)
= ensure fairness
= not relevant for single-user systems (eg, laptops, workstations)

Short-term: Non-Preemptive Scheduler

m Non-preemptive: running —/~ ready

m Wait-time of a process: time it spends in ready queue

m FIFO
= arrival joins at tail // from waiting, new or suspended
= departure leaves from head // to running

= favors long processes over short ones
= favors processor-bound over io-bound
= high wait-time: short process stuck behind long process

m Shortest-Job-First (SJF)

= assumes processor times of ready PCBs are known
= departure is one with smallest processor time
= minimizes wait-time

m Fixed-priority for processes: eg: system, foreground, background

Short-term: Preemptive — 1 Scheduler

m Preemptive: running — ready

m Wait-time of a process: total time it spends in ready queue

m Round-Robin

» FIFO with time-slice preemption of running process
arrival from running, waiting, new or suspended

all processes get same rate of service

overhead increases with decreasing timeslice

ideal: timeslice slightly greater than typical cpu burst

Short-term: Preemptive — 2 Scheduler

m Multi-level Feedback Queue

m priority of a process depends on its history
= decreases with accumulated processor time

= queue 1, 2, ---, queue N // decreasing priority
= departure comes from highest-priority non-empty queue
= arrival coming not from running:

= joins queue 1
= arrival coming from running
= joins queue min(i + 1, N) // i was arrival’s previous level

= To avoid starvation of long processes
= longer timeslice for lower-priority queues
= after a process spends a specified time in low-priority queue
move it to a higher-priority queue

Multiprocessor Scheduling Scheduler

m Set of ready processes is shared
m So scheduling involves
= get lock on ready queue
= ensure it is not in a remote processor’s cache
= choose a process (based on its usage of processor, resources, ...)

m Process may acquire affinity to a processor (ie, to its cache)
= makes sense to respect this affinity when scheduling

m Per-processor ready queues simplifies scheduling, ensures affinity
= but risk of unfairness and load imbalance

m Could dedicate some processors to long-running processes
and others to short/interactive processes

	Overview
	Process State
	Process Creation
	Process Termination
	User-Threads Management
	Booting the OS
	Inter-Process Communication: Pipes
	Inter-Process Communication: Signals
	Inter-Process Communication: Internet Sockets
	Schedulers

