
Operating Systems:

Processes and Threads

Shankar

February 10, 2022



Outline Overview

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



User Perspective Overview

Process: executing instance of a program

Threads: active agents of a process

Address space

text segment: code
data segment: global and static
stack segment, one per thread

Resources: open �les and sockets

Code: non-privileged instructions

including syscalls to access OS services

All threads execute concurrently



OS Kernel Overview

Data structure: state of processes, user threads, kernel threads

Process: address space, resources, user threads

user thread: user-stack, kernel-stack, processor state
mapping of content to hardware location (eg, memory, disk)

memory vs disk (swapped out)

user thread status: running, ready, waiting, mode

Kernel thread: kernel-stack, processor state

Schedulers:

short-term: ready → running
io device: waiting → io service → ready
medium-term: ready/waiting ↔ swapped-out
long-term: start → ready
e�cency and responsiveness



Outline Process state

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Single-Threaded Process Process state

PCB (process control block): one per process

holds enough state to resume the process
process id (pid)
processor state: gpr, ip, ps, sp, ...
address-space: text, data, user-stack, kernel-stack

mapping to memory/disk

io state: open �les/sockets, current positions, access, ...
accounting info: processor time, memory limits, ...
...

Status

running: executing on a processor
ready (aka runnable): waiting for a processor
waiting: for a non-processor resource (eg, memory, io, ...)
swapped-out: holds no memory



Multi-Threaded Process Process state

PCB (process control block): one per process

address-space: text, data
io state
accounting info
TCBs (thread control block): one per thread // user thread

processor state
user-stack, kernel-stack
status: running, ready, waiting, ...

...

Process swapped-out → all threads swapped out

User thread:

user-mode: executing user code, using user-stack
kernel-mode: executing kernel code, using kernel-stack



Kernel threads Process state

Threads belonging to the kernel

asynchronous services: io, reaper, ...
always in kernel-mode

TCB (thread control block): one per kernel thread

holds enough state to resume the thread
processor state: gpr, ip, ps, sp, ...
kernel-stack // no user-stack
status: running, ready, waiting



Process queues Process state

Kernel keeps PCBs/TCBs in queues

new queue: processes to be started
run queue
ready (aka runnable) queue
io queue(s)
swapped-out queue
terminated queue: processes to be cleaned up

Transitions between queues

swapped−out

new terminatedready
admit

waiting

kill

running
io req / wait

io completion / wakeup

timer

dispatch

medium−term scheduler



User-level Threads Process state

Threads implemented entirely in user process

Kernel is not aware of them

kernel sees only one user thread

User code maintains

TCBs
signal handlers (for timer/io/etc interrupts)
dispatcher, scheduler

OS provides low-level functions via which user process can

get processor state
dispatch processor state
to/from environment variables

User-level vs kernel-level

Pro: application-speci�c scheduling
Con: cannot exploit additional processors



Outline Process creation

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Approach 1: Create Process from Scratch Process creation

CreateProcess(path, context): // GeekOS Spawn

read �le from �le system's path // executable �le
acquire memory segments // code, data, stack(s), ...
unpack �le into its segments
create PCB // pid, ...
update PCB with context // user, directory, ...
add PCB to ready queue

Drawback: context has a lot of parameters to set



Approach 2: Fork-Exec Process creation

Fork(): creates a copy of the caller process
// returns 0 to child, and child's pid to parent

create a duplicate PCB
except for pid, accounting, pending signals, timers,
outstanding io operations, memory locks, ...
only one thread (the one that called fork)

allocate memory and copy parent's segments
minimize overhead: copy-on-write; memory-map hardware

add PCB to the ready queue

Exec(path, ...): replaces all segments of executing process
exec[elpv] variants: di�erent ways to pass args, ...
open �les are inherited
not inherited: pending signals, signal handlers, timers, memory
locks, ...
environment variables are inherited except with exec[lv]e



Outline Process termination

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Zombie Process termination

Process A becomes a zombie when

A executes relevant OS code (intentionally or o/w)

exit syscall
illegal op
exceeds resource limits
...

A gets kill signal from a (ancestor) process

A is moved to terminated queue

What happens to A's child process (if any)

becomes a root process's child (orphan) // Unix
is terminated // VMS



Reap Process termination

Process A in the termination queue is eventually reaped

its memory is freed
its parent is signalled (SIGCHILD)
it waits for parent to do wait syscall

parent gets exit status, accounting info, ...



Outline user threads

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



POSIX threads user threads

thread_create(thrd, func, arg)

create a new user thread executing func(arg)
return pointer to thread info in thrd

thread_yield():

calling thread goes from running to ready
scheduler will resume it later

thread_join(thrd):

wait for thread thrd to �nish
return its exit code

thread_exit(rval):

terminate caller thread, set caller's exit code to rval
if a thread is waiting to join, resume that thread



Outline Boot

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



OS initialization Boot

Power-up:

BIOS: disk boot sector → RAM reset address
processor starts executing contents

Boot-sector code:

load kernel code from disk sectors to RAM, start executing

Kernel initialization:

identify hardware: memory size, io adaptors, ...
partition memory: kernel, free, ...
initialize structures: vm/mmap/io tables, pcb queues, ...
start daemons: OS processes that run in the background

idle
io-servers
login/shell process bound to console

mount �lesystem(s) in io device(s)



Outline Pipes

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Pipes

398

Kernel file data structures
● Inode table: has a copy of the inode of every open 

vertex (file or directory)
– may differ from the inode in the disk

● Open-file table: has an entry for every open call not 
yet succeeded by a close call (across all processes)

Each entry holds:
– current file position, reference count (how many file 

descriptors point to the entry), inode pointer, etc.
– Entry is removed when the reference count is 0

● For each process: a file descriptor table, mapping 
integers to open-file table entries

© 2016 L. Herman & A. U. Shankar



Pipes

399

open file table

Opening the same file twice
fd1= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);
read(fd2, buffer, 1024);

FD
0
1
2
3
4

open-file entry 1
position 0
ref. count 1
inode

open-file entry 2
position 1024
ref. count 1
inode

inode table entry
permissions 0666

size 50238
type regular file

...

inode table entry

.. …

inode table
file descriptor 

table
(per process)

© 2016 L. Herman & A. U. Shankar



Pipes

400

FD
...

3
4

open file table

After a fork()
fd1= open("file.txt", O_RDONLY);
fd2= open("file.txt", O_RDONLY);
read(fd2, buffer, 1024);
fork();

open file 1
position 0
ref. count 2
inode

open file 2
position 1024
ref. count 2
inode

inode table entry
permissions 0666
size 50238
type regular file

...

FD

...

3

4

parent

child

© 2016 L. Herman & A. U. Shankar



Pipes

406

open file table

Opening a pipe
int pfd[2];
pipe(pfd);

FD
0
1
2
3
4

open file (read)
position n/a
ref. count 1
inode

open file (write)
position n/a
ref. count 1
inode

inode table entry
permissions 0666
size 0
type pipe

...

© 2016 L. Herman & A. U. Shankar



Pipes

407

After a fork()
int pfd[2];
pipe(pfd);
fork();

FD
...

3

4

open file table

open file (read)
position n/a
ref. count 2
inode

open file (write)
position n/a
ref. count 2
inode

inode table entry
permissions 0666
size 0
type pipe

...

FD
...

3
4

parent

child

Example pipe-example.c
© 2016 L. Herman & A. U. Shankar



Example: data transfer on pipe from parent to child Pipes

Process, say A, creates pipe

A forks, creating child process, say B

A closes its read-end of pipe, writes to pipe

B closes its write-end of pipe, reads from pipe

byte stream: in-chunks need not equal out-chunks

A blocks if bu�er is full and B has not closed read-end

B blocks if bu�er is empty and A has not closed write-end

read when no data and no writers (write-end has zero ref count):

read returns 0

write when no readers (read-end has zero ref count):

writer process receives SIGPIPE signal
write returns EPIPE



Outline Signals

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Signals: user perspective Signals

Process-level interrupt with a small integer argument n (0..255)

SIGKILL, SIGCHILD, SIGSTOP, SIGSEGV, SIGILL, SIGPIPE, ...

Who can send a signal to a process P :

another process (same user/ admin) // syscall kill(pid , n)
kernel
P itself

When P gets a signal n, it executes a �signal handler�, say sh

signal n is pending until P starts executing sh
for each n, at most one signal n can be pending at P
at any time, P can be executing at most one signal handler

Each n has a default handler: ignore signal, terminate P , ...

P can register handlers for some signals // syscall signal(sh, n)

if so, P also registers a trampoline function,
which issues syscall complete_handler



Signals: implementation Signals

P 's pcb has

pending bit for each n // true i� signal n pending
ongoing bit // true i� any signal handler is being executed

When P gets a signal n, kernel sets pending n.
Causes sh to execute at some point when P is not running

When kernel-handled pending n and not ongoing :
kernel sets ongoing , clears pending n, starts executing its sh
when sh ends, kernel unsets ongoing .

When user-handled pending n, not ongoing, and P in user mode:

kernel sets ongoing , clears pending n,
saves P 's stack(s) somewhere and modi�es them so that

P will enter sh with argument n
P will return from sh and enter trampoline

when P returns to kernel (via complete_handler),
kernel clears ongoing and restores P 's stack(s)



Stacks when handling user-level signal (x86 style) Signals

user stack kernel stack

prior to resuming P in user mode, signal n pending
ustack0 istate0

usp0
- istate0: interrupt state of process P
- usp0: top of user stack

prior to resuming P at sh in user mode
ustack0
n
trampoline

istate1
usp1

- istate1: istate0 with eip ← sh
- usp1: usp0 − sizeof(n, &trampoline)

just after executing syscall complete_handler
ustack0
n

istate2
usp2

just prior to resuming P at istate0
ustack0 istate0

usp0
- istate0 and usp0 restored



Outline Sockets

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Internet Streaming Sockets Sockets

Two-way data path: client process ↔ server process

Server:

ss ← socket(INET, STREAMING) // get a socket
bind(ss, server port)
client addr:port ← accept(ss)
send(ss, data) // byte stream
data ← recv(ss) // byte stream
close(ss) // returns when remote also closes

Client

sc ← socket(INET, STREAMING) // get a socket
status ← connect(sc, server addr:port) // returns sucess or fail
send(sc, data) // byte stream
data ← recv(sc) // byte stream
close(sc)



Sockets

client servertcp socket tcp socket

A Bx1 x2

close( ) close( )

[ip addr, tcp port]

data

open to x1

accept( )

connect(x2)

open

send(data)

recv( )
data

send(data)

recv( )

bind(x2)

tcp closing handshake

tcp opening handshake

tcp data transfer



Outline Scheduler

1. Overview

2. Process State

3. Process Creation

4. Process Termination

5. User-Threads Management

6. Booting the OS

7. Inter-Process Communication: Pipes

8. Inter-Process Communication: Signals

9. Inter-Process Communication: Internet Sockets

10. Schedulers



Schedulers Scheduler

swapped−out

new terminatedready
admit

waiting

kill

running
io req / wait

io completion / wakeup

timer

dispatch

medium−term scheduler

Short-term (milliseconds) : ready → running

high utilization: fraction of time processor doing useful work
low wait-time: time spent in ready queue per process
fairness / responsiveness: wait-time vs processor time

Medium-term (seconds): ready/waiting ↔ swapped-out

avoid bottleneck processor/device (eg, thrashing)
ensure fairness
not relevant for single-user systems (eg, laptops, workstations)



Short-term: Non-Preemptive Scheduler

Non-preemptive: running −→/ ready

Wait-time of a process: time it spends in ready queue

FIFO

arrival joins at tail // from waiting, new or suspended
departure leaves from head // to running
favors long processes over short ones
favors processor-bound over io-bound
high wait-time: short process stuck behind long process

Shortest-Job-First (SJF)

assumes processor times of ready PCBs are known
departure is one with smallest processor time
minimizes wait-time

Fixed-priority for processes: eg: system, foreground, background



Short-term: Preemptive � 1 Scheduler

Preemptive: running −→ ready

Wait-time of a process: total time it spends in ready queue

Round-Robin

FIFO with time-slice preemption of running process
arrival from running, waiting, new or suspended
all processes get same rate of service
overhead increases with decreasing timeslice
ideal: timeslice slightly greater than typical cpu burst



Short-term: Preemptive � 2 Scheduler

Multi-level Feedback Queue

priority of a process depends on its history
decreases with accumulated processor time

queue 1, 2, · · · , queue N // decreasing priority
departure comes from highest-priority non-empty queue
arrival coming not from running:

joins queue 1

arrival coming from running

joins queue min(i + 1,N) // i was arrival's previous level

To avoid starvation of long processes

longer timeslice for lower-priority queues
after a process spends a speci�ed time in low-priority queue
move it to a higher-priority queue
...



Multiprocessor Scheduling Scheduler

Set of ready processes is shared

So scheduling involves

get lock on ready queue

ensure it is not in a remote processor's cache

choose a process (based on its usage of processor, resources, ...)

Process may acquire a�nity to a processor (ie, to its cache)

makes sense to respect this a�nity when scheduling

Per-processor ready queues simpli�es scheduling, ensures a�nity

but risk of unfairness and load imbalance

Could dedicate some processors to long-running processes
and others to short/interactive processes


	Overview
	Process State
	Process Creation
	Process Termination
	User-Threads Management
	Booting the OS
	Inter-Process Communication: Pipes
	Inter-Process Communication: Signals
	Inter-Process Communication: Internet Sockets
	Schedulers

