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1 Introduction

Queueing theory is all about the performance of systems where customers compete for nonshareable

resources. A queueing system has servers, representing resources, and a stream of customers with

service requirements. If several customers want service at the same server, all but one of the

customers wait according to some queueing discipline.

Operating systems are examples of queueing systems; here, customers correspond to processes, io-

requests, etc., and resources correspond to cpu, memory, disks, etc. Hence, queueing theory allows us

to examine the e�ect of varying customers, resources, and scheduling disciplines on OS performance,

without having to resort to costly emulation or implementation.

Road tra�c is another source of queueing systems; here, the customers are cars, trucks, etc., and

the servers are tra�c lights, construction sites, intersections, etc. Indeed, road tra�c, because of

our intimate familiarity with it, provides a convenient \reality" check for queueing results.

The following introduces some simple results of queueing theory while assuming no background in

probability theory and stochastics. Note that \queue", when used as a noun, refers to the waiting

room plus server, and \queue", when used as verb, does not imply FCFS (�rst-come-�rst-served)

discipline.

2 The Reason for Queues

The simplest queueing system is the single-server queue. It consists of a single server and a

waiting room. Customers arrive, each with a service requirement. An arriving customer either

starts getting service or waits according to some queueing discipline.

queueing
discipline

serverwaiting roomcustomer
arrivals

customer
departures

service
time

Consider a road with a construction site bottleneck. Suppose a car takes 3 s to go through the site.

This can be modeled as a single-server queue, where the server is the site and the waiting room is

the road where cars line up in case of congestion. Cars wait in FCFS order. The waiting time for a

car is the time from its arrival until entry to the construction site. The response time for a car is the

time from its arrival until exit from the construction site. The throughput is the average number of

cars departing per second.

2.1 Light load

Suppose cars arrive separated by 4 s, starting at time 0. Let N (t) denote the number of cars in the

system at time t. N (t) evolves as follows:
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N(t)

3 _|

2 _| C1 C2 C3

1 _|______________ ______________ ______________ __

0 _|______________|____|______________|____|______________|_____|____ time

0 1 2 3 4 5 6 7 8 9 10 11 12

C1 C1 C2 C2 C3 C3 C4

arr dep arr dep arr dep arr

Since 1 car departs every 4 s, the throughput is 1/4 cars/s. The waiting time for each car is 0 s.

The response time for each car is 2 s. The average number of cars in the queue is 2=3, because there

is one car for 2 s out of every 3 s interval. The average number of waiting cars in the queue is 0: a

very lightly loaded system.

2.2 Heavy load

How can we get a queue to build up? Suppose cars arrive separated by 2 s. We get the following:

N(t)

_|

4 _| C3 C4 C4 C5

3 _| C1 C2 C2 C3 _____ _________|___

2 _| C1 ____ _________|________| |____|

1 _|_________| |____|

0 _|_________________________________________________________________ time

0 1 2 3 4 5 6 7 8 9 10 11 12

C1 C2 C1 C3 C2 C4 C5 C3 C6 C4 C7

arr arr dep arr dep arr arr dep arr dep arr

Note that N (t) repeats every 6 s (the least common multiple of 2 and 3), except that each time it

moves up by 1. The queue, and hence the delays, increase without bound. The system is said to be

unstable. The waiting time is 0 s for car 1, 1 s for car 2, 2 s for car 3, and, in general, k s for car k.

Since 1 car departs every 3 s, the throughput is 1/3 cars/s. This is less than the arrival rate, which

is 1/2 cars/s.

2.3 Bunched load

Unstable queues are also unrealistic, because in real-life queues grow and shrink. Cars do queue up at

construction sites, but we know from experience that over, say, an hour, these queue sizes uctuate

about some average, rather than steadily increasing over time. The reason for this is variations in

customer arrival times and service requirements. Real-life cars travel in clusters and take di�ering

times to go through a bottleneck.

Suppose we bunch up cars so that car 1 arrives at time 0, car 2 at time 2, and the pattern repeats

every 8 s (i.e. cars 3 and 4 at times 8 and 10, cars 5 and 6 at times 12 and 14, etc.).

We get the following:
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N(t)

_|

3 _| C1 C3

2 _| C1 ___ C2 C3 ___ C4

1 _|_______| |___________ ________| |___________

0 _|_______________________|_______|________________________|________ time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C1 C2 C1 C2 C3 C4 C3 C4

arr arr dep dep arr arr dep dep

The waiting time is 0 s for odd cars and 1 s for even cars. The response time is 3 s for odd cars and

4 s for even cars. The average number of cars in the system is 7/8, since every 8 s interval has 1 car

for 5 s and 2 cars for 1 s. The average number of waiting cars is 1/8.

Since 2 cars depart every 8 s, the throughput is 2/8 cars/s, which is the same as in the �rst case.

3 Performance Measures

We now de�ne various performance measures for a queueing system. We have already seen some

of these, e.g. throughput, response time, average number of customers. Some measures, such as

throughput, are de�ned per unit time (e.g. per second). Some measures, such as response time,

are de�ned per customer. Some measures, referred to as instantaneous measures, are de�ned over a

�nite time interval or a particular customer. Some measures, referred to as steady-state measures,

are de�ned over all time or over all customers (perhaps of some class).

3.1 Instantaneous measures

Let customer i be the ith customer to arrive at the queue, where i = 1; 2; 3; � � �. The stream of

customers can be unending or it can be �nite. For customer i, let

A

i

denote its arrival time to the system.

S

i

denote its service requirement.

D

i

denote its departure time from system. (function of A

i

's, S

i

's, and queueing discipline)

To de�ne an unending stream of customers, we usually de�ne a �nite stream of customers and have

that repeat with some period.

Let

� N (t) denote the number of customers in the system at time t (both waiting and in service).

� N

W

(t) denote the number of waiting customers in the system at time t.

� Y (t) denote the un�nished work in the system at time t; i.e. the remaining service time of the

customer being served (if any) plus the sum of the service times of the waiting customers (if

any).

For any customer i:

� R

i

denotes the response time (departure time minus arrival time): R

i

= D

i

�A

i
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� W

i

denotes the waiting time: W

i

= R

i

� S

i

We next de�ne some \per-time" measures for an arbitrary time interval [t

1

; t

2

], where t

1

< t

2

:

� Arrival rate over [t

1

; t

2

] =

number of arrivals in [t

1

; t

2

]

t

2

� t

1

� O�ered load (or arriving work) over [t

1

; t

2

] =

S

i

1

+ S

i

2

+ � � �+ S

i

n

t

2

� t

1

where i

1

; i

2

; � � � ; i

n

are the customers arriving in [t

1

; t

2

].

� Throughput (or departure rate) over [t

1

; t

2

] =

number of departures in [t

1

; t

2

]

t

2

� t

1

� Average number of customers in system for time interval [t

1

; t

2

] =

R

t

2

t

1

N (t) dt

t

2

� t

1

This is the area under N (t) in the time interval [t

1

; t

2

].

� Utilization of a server over [t

1

; t

2

] =

fraction of [t

1

; t

2

] where the server is busy

t

2

� t

1

3.2 Steady-state measures

We have seen that a queueing system with an unending stream of customers can be stable or

unstable. An unstable system always has waiting customers and its queues keep getting bigger. A

stable system cycles through busy periods and idle periods, and its queues grow and shrink but they

don't blow up.

For a stable queueing system, we are interested in \steady-state" performance measures, i.e. over

the time interval [0 ; 1), or over all customers, or over all customers of some class (e.g. the odd cars

in the above example). Steady-state measures are not usually interesting for systems with a �nite

stream of customers, because the measures are usually zero.

We have the following:

� Average service time S = lim

n!1

P

n

i=1

S

i

n

� Average response time R = lim

n!1

P

n

i=1

R

i

n

(assumes stable system)

� Average waiting time W = lim

n!1

P

n

i=1

W

i

n

(assumes stable system)

� Average number of customers in system N = lim

t!1

R

t

0

N (t) dt

t

(assumes stable system)

� Arrival rate � = lim

t!1

number of arrivals in [0 ; t]

t
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� O�ered load � = lim

t!1

o�ered load for [0; t]

t

� Throughput X = lim

t!1

number of departures in [0 ; t]

t

� Utilization U = lim

t!1

Utilization for [0 ; t]

t

Observations:

� O�ered load � = �S

� A single-server system is unstable if � > 1

� For stable system: X = � and U = �

� For an unstable system: X =

1

S

and U = 1

4 E�ect of Queueing Disciplines

We examine the e�ect of four queueing disciplines: FCFS, SJF (shortest-job-�rst), SJFP (shortest-

job-�rst-preemptive), and RR (round-robin). Consider a single-server queue with customers as

follows (all times are in seconds):

customer A

i

S

i

1 1.0 3.0

2 2.0 2.0

3 2.5 1.0

repeated every 10 seconds (e.g. customers 4, 5, 6 arrive at times 11.0, 12.0, 12.5,

with service requirements 3.0, 2.0, 1.0)

4.1 First-come-�rst-served (FCFS)

The dynamics of the queue can be seen by plotting N (t) versus time. Also indicated are the ids of

customers arriving, departing, and getting service.

N(t)

_|

4 _| C1

3 _| C1 ____________ C2

2 _| C1 ______| |_________ C3

1 _| _______| |________

0 _|______|______________________________________________|________ time

0 1 2 2.5 4 6 7 (seconds)

C1 C2 C3 C1 C2 C3

arr arr arr dep dep dep

The system becomes empty at time 7. Thus the system is stable and the pattern repeats at times

10, 20, etc. The customer departure, response, and wait times are as follows:
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customer A

i

S

i

D

i

R

i

W

i

1 1.0 3.0 4.0 3.0 0.0

2 2.0 2.0 6.0 4.0 2.0

3 2.5 1.0 7.0 4.5 3.5

Average response time R =

3:0 + 4:0 + 4:5

3

=

11:5

3

Average wait time W =

0:0 + 2:0 + 3:5

3

=

5:5

3

Throughput X =

3

10

. (The instantaneous throughput over [0; 10] is

3

10

, over [0; 3] it is

0

3

= 0,

and over [0; 5] it is

1

5

.)

Utilization U =

6

10

. (The instantaneous utilization over [0; 3] is

2

3

, over [0; 5] it is

4

5

, and over

[0; 10] it is

6

10

.)

Average number of customers in the system N =

11:5

10

. (The instantaneous measure over [0; 10]

is

(7�1)+(6�2)+(4�2:5)

10

=

11:5

10

; note that it's easier to calculate the area by partitioning it in

horizontal rectangles of unit height than vertical rectangles of unit width. Over [0; 3] the measure

is

(3�1)+(3�2)+(3�2:5)

3

=

3:5

3

, and over [0; 5] it is

(5�1)+(5�2)+(4�2:5)

5

=

8:5

5

.)

4.2 Shortest-job �rst (SJF)

N(t)

_|

4 _| C1

3 _| C1 ___________ C3

2 _| C1 ______| |______ C2

1 _| _______| |____________

0 _|______|______________________________________________|________ time

0 1 2 2.5 4 5 7 (seconds)

C1 C2 C3 C1 C3 C2

arr arr arr dep dep dep

The system becomes empty at time 7, as with FCFS. Thus it is stable and the pattern repeats every

10 s. The (steady-state) throughput X =

3

10

and utilization U =

6

10

, as with FCFS. The customer

departure, response, and wait times are:

customer A

i

S

i

D

i

R

i

W

i

1 1.0 3.0 4.0 3.0 0.0

2 2.0 2.0 7.0 5.0 3.0

3 2.5 1.0 5.0 2.5 1.5

R =

3:0 + 5:0 + 2:5

3

=

10:5

3

(smaller than with FCFS)

W =

0:0 + 3:0 + 1:5

3

=

4:5

3

" "

N =

(7 � 1) + (5� 2) + (4� 2:5)

10

=

10:5

10

" "
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4.3 Shortest-job-�rst-preemptive (SJFP)

N(t)

_|

4 _| C3

3 _| C1 ______ C1

2 _| C1 ______| |___________ C2

1 _| _______| |____________

0 _|______|______________________________________________|________ time

0 1 2 2.5 3.5 5 7 (seconds)

C1 C2 C3 C3 C1 C2

arr arr arr dep dep dep

When customer 2 arrives, customer 1 has remaining service time of 2 s. Since customer 2's service

time is also 2 s, it does not preempt customer 1. When customer 3 arrives, customer 1 has remaining

service time of 1:5 s. Since customer 2's service time of 1 s is less, it preempts customer 1. When

customer 3 departs, customer 1 takes priority over customer 2 since customer 1 has lower remaining

service time.

As with FCFS and SJF, the system becomes empty at time 7, the throughput X =

3

10

, and

utilization U =

6

10

. The customer departure, response, and wait times are:

customer A

i

S

i

D

i

R

i

W

i

1 1.0 3.0 5.0 4.0 1.0

2 2.0 2.0 7.0 5.0 3.0

3 2.5 1.0 3.5 1.0 0.0

R =

4:0 + 5:0 + 1:0

3

=

10:0

3

(smaller than with SJF)

W =

1:0 + 3:0 + 0:0

3

=

4:0

3

" "

N =

(7 � 1) + (5� 2) + (3:5� 2:5)

10

=

10:0

10

" "

4.4 Round-robin (RR) with quantum size 1 s

N(t)

_|

4 _| C2 C1 C3

3 _| C2 ____|______|________ C2

2 _| C1 ____| |______ C1

1 _| ______| |______

0 _|____|______________________________________________|________ time

0 1 2 2.5 3 4 5 6 7 (seconds)

C1 C2 C3 C3 C2 C1

arr arr arr dep dep dep

Just after time: 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Order of customers C1-3 C2-2 C1-2 C3-1 C2-1 C1-1

and their remaining C1-2 C3-1 C2-1 C1-1

service C2-1 C1-1
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As with the previous disciplines, the system becomes empty at time 7, the throughput X =

3

10

,

and utilization U =

6

10

.

The customer departure, response, and wait times are:

customer A

i

S

i

D

i

R

i

W

i

1 1.0 3.0 7.0 6.0 3.0

2 2.0 2.0 6.0 4.0 2.0

3 2.5 1.0 5.0 2.5 1.5

R =

6:0 + 4:0 + 2:5

3

=

12:5

3

(larger than with previous disciplines)

W =

3:0 + 2:0 + 1:5

3

=

6:5

3

" "

N =

(7 � 1) + (6� 2) + (5� 2:5)

10

=

12:0

10

" "

4.5 Relationship between N and R

The disciplines achieve the same U (=

6

10

) and X(=

3

10

) but di�erent R and N :

FCFS SJF SJFP RR

R

11:5

3

10:5

3

10:0

3

12:5

3

N

11:5

10

10:5

10

10:0

10

12:5

10

However, the ratio of R and N is constant. In fact, N = R � X holds for each discipline. More

generally, we have the following:

Little's Law: For any queueing system in steady-state N = R�X

Little's Law applies to single-server queues as well as networks of queues. It applies to queueing

systems with one or more classes of customers. It applies to any stable subsystem of a queueing

system. For example, if a queueing system has several classes of customers and X

i

, R

i

, and N

i

are,

respectively, the throughput, response time, and average number of customers of the ith class, then

N

i

= R

i

�X

i

. This is true even if the overall system is unstable, e.g. even if N

j

blows up for some

class j 6= i.

For another example, consider the waiting room of a single-server queue. Applying Little's Law to

this subsystem, we get N

W

= W �X, where N

W

is the number of waiting customers in the queue,

W is the average waiting time in the queue, and X is the throughput of the queue (since every

customer that leaves the waiting room also eventually leaves the server).

4.6 Relationship between R and service time

The di�erent disciplines distinguish customers based on their service times:

service time W

FCFS

W

SJF

W

SJFP

W

RR

1.0 3.5 1.5 0.0 1.5

2.0 2.0 3.0 3.0 2.0

3.0 0.0 0.0 1.0 3.0

In general, SJFP favors customers with small service times at the expense of customers with large

service times. SJF also does this, but less severely. RR also does this, but even less severely and

linearly (for small quantum sizes). Disciplines such as FCFS and LIFO do not discriminate on
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service times. This property is illustrated by plotting W (S), the average waiting time for customers

with service time S, versus S:

S (service time)

W(S) 

w
a

it
 t

im
e

 f
o

r 
c
u

s
to

m
e

rs
w

it
h

 s
e

rv
ic

e
 t

im
e

 S FCFS

RR (qs −> 0)
SJF

More generally, a queueing discipline can discriminate customers into di�erent classes, either implic-

itly (based usually on customer service times) or explicitly (based on preassigned priorities).

4.7 Relationship between idle and busy periods

Note that the system emptied at the same time for each of the above queueing disciplines. This too

is can be generalized for single-server queues.

Observe that the server cycles between idle periods and busy periods. A busy period starts when

a customer arrives to an empty queue. An idle period starts when a customer departs leaving an

empty queue. A discipline is said to be work-conserving if the server is not idle when there is a

customer waiting.

Work-conserving Law: The sequence of idle and busy periods, and hence the utilization, is

independent of queueing discipline, provided the discipline is work-conserving.

This is obvious when we observe that the evolution of Y (t), the un�nished work in the queue at

time t, is independent of the queueing discipline. When customer i arrives, Y (t) jumps up by S

i

.

Whenever Y (t) > 0, it decreases with slope �1. Y (t) = 0 is an empty system.

time t

Y(t)

u
n

fi
n

is
h

e
d

 w
o

rk
 a

t 
ti
m

e
 t

1

2

3

4

1.0 2.0 2.5 7.0

5 M/M/1 queues

We have seen that queueing arises because of variations in customer arrival times or service require-

ments. Di�erent kinds of variations gives rise to di�erent values of performance measures. Ideally

we would like to average over arrival and service sequences that reect the variability occurring in
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practice. But this is di�cult to do because we often do not know the variations occuring in practice,

and even when we do we often cannot analyze the resulting performance expressions.

The good news is that there are analytically simple probabilistic ways to de�ne arrival and service

sequences so that the resulting performance measures accurately describe many real-life situations.

The simplest of these ways is the so-called M/M/1 assumption: that interarrival times and service

times are independent and exponentially distributed with means 1=� and S, respectively.

[For insight, we can compare the sequence of interarrival times to the sequence of numbers resulting

by repeatedly throwing a fair dice. Each number is uniformly distributed over the values 1, 2, 3, 4, 5,

6 (and hence has a mean of 3.5). The numbers are independent of each other, i.e. a number's value

does not tell us anything about the other numbers. In the case of interarrival times, each interarrival

time is a real number that is exponentially distributed with mean 1=�, and it is independent of all

other interarrival times.]

In \M/M/1", the �rst \M" indicates memoryless arrivals, the second \M" indicates memoryless

service times, and the 1 indicates the number of servers. It turns out that if one tries to do some-

thing without any memory of the past, then the time taken to do that something is exponentially

distributed. This is true, for example, of the time taken by elementary particles to decay.

For a stable M/M/1 queue

N =

�

1� �

Recall that � > 1 results in instability. The above equation indicate that � = 1 is also unstable.

This happens when arrival and service times are de�ned probabilistically. Although this may seem

unintuitive (and does not happen if arrival and service times are de�ned deterministically), it is in

fact what happens in real-life.

N grows at an increasing rate as � approaches 1 from below. The following two plots indicate the

rapidity of this growth:

0.2 0.4 0.6 0.8
offered load

2

4

6

8

N

0.2 0.4 0.6 0.8
offered load

5

10

15

20

25

30

N

Because � = �S and N = R� (Little's law), we have for a stable M/M/1

R =

S

1� �

and, from W = R� S,

W =

S�

1� �
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6 A Priority Queue

Consider a single-server M/M/1 queue that gets customers with average service requirement S and

arrival rate �. Assuming �S < 1, we have

N =

�S

1� �S

Now suppose that the stream of customers is divided into two classes, G and H, using some distinc-

tion (which is of no concern to us), e.g. H may be customers that are tall, or customers with service

times above some threshold. Let �

G

and �

H

be the arrival rates for G and H customers respectively.

Let S

G

and S

H

be the average service times for G and H customers respectively. Clearly

�

G

+ �

H

= �

�

G

S

G

+ �

H

S

H

= �S

Suppose G customers get preemptive priority over H customers. Then H customers do not exist

as far as G customers are concerned. Thus G customers perceive the server as dedicated to them.

Assuming M/M/1 for the G customers, we get the average number of G customers in the system to

be (the subscripts identify the customer class to which the measure applies):

N

G

=

�

G

S

G

1� �

G

S

G

R

G

=

N

G

�

G

=

S

G

1� �

G

S

G

H customers get whatever is left of the server, which is 1 � �

G

S

G

, since the work brought by G

customers is �

G

S

G

. Thus it takes S

0

H

seconds to give an H customer S

H

seconds of service, where

S

0

H

=

S

H

1� �

G

S

G

If we assume that M/M/1 holds for the H customers also, we get

N

H

=

�

H

S

0

H

1� �

H

S

0

H

=

�

H

S

H

1� �

G

S

G

� �

H

S

H

R

H

=

S

H

1� �

G

S

G

� �

H

S

H

Note that the H subsystem is stable if �

H

S

0

H

< 1, which simpli�es to �S < 1. Thus both the H

and G subsystems are stable given the stability of the original system, which is to be expected since

the priority queueing discipline is work-conserving.

Unfortunately, the above expressions are not correct because the H customers do not satisfy M/M/1.

The correct expression is [Kleinrock, vol 2, ch 3, page 125, eq 3.39]

R

H

=

S

H

+ �

G

S

G

(S

G

� S

H

)

(1� �

G

S

G

)(1� �

G

S

G

� �

H

S

H

)

What is the relationship between the performance measures of the original queue and the priority

queue for each class of customers? Do the following hold?

N

G

+N

H

> N

R

G

< R

R

H

> R
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